Today we live in the age of epidemics. More and more serious epidemics are appearing. Coronavirus disease 2019 (COVID–19) is a highly contagious disease caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2). The virus probably spread from bats to humans. One virus of Rhinolophus sinicus showed 80% similarity, while the virus strain of Rhinolophus affinis showed 96% similarity with SARS-CoV-2. Human-to-human transmission of the COVID–19 infection has led to the isolation of patients. Due to globalized travel, it has spread worldwide, the World Health Organization (WHO) declared it a pandemic, and today it is considered a major public health problem. Besides the acute symptoms after infection, patients and society are also being challenged by long-term health complications associated with COVID–19 including the post-COVID–19 syndrome, also known as long-COVID. Within the post-acute COVID–19 syndrome, two stages are distinguished: subacute COVID–19 between 4 and 12 weeks after acute infection and post-COVID–19 syndrome characterized by symptoms that persist beyond 12 weeks. It is characterized by a wide range of symptoms that affect several organ systems. Treatment of complaints consists primarily of symptomatic treatment and multidisciplinary rehabilitation. Vaccination against COVID–19 is one of the most important means of mitigating the pandemic. Extensive research in recent years has confirmed the effectiveness of the COVID–19 vaccines. International studies have shown that the vaccine has proven to be a protective factor against long-lasting COVID symptoms. In this review, the symptoms, epidemiology, transmission, pathogenesis of COVID–19 as well as the effects of the post-COVID–19 syndrome on certain organ systems, its rehabilitation, and the effect of vaccines on the development of symptoms are highlighted. Orv Hetil. 2024; 165(33): 1266–1274.
Manapság a járványok korát éljük. Egyre több és egyre súlyosabb járvány jelenik meg. A 2019. évi koronavírus-betegség (COVID–19) rendkívül fertőző betegség, amelyet a súlyos akut légúti szindrómát okozó új koronavírus (SARS-CoV-2) idéz elő. A vírus feltételezhetően denevérről terjedt át az emberre. A Rhinolophus sinicus egyik vírusa 80%-os, míg a Rhinolophus affinis vírustörzse 96%-os hasonlóságot mutatott a SARS-CoV-2-vel. A COVID–19-fertőzés emberről emberre történő átvitele a betegek elkülönítéséhez vezetett. A betegség a globalizált utazások következtében világszerte elterjedt, az Egészségügyi Világszervezet (WHO) világjárványnak nyilvánította, ma pedig jelentős közegészségügyi problémaként tartják számon. A fertőzés okozta akut tünetek mellett a pácienseknek és a társadalomnak szembesülnie kell a vírusfertőzés hosszú távú egészségkárosító szövődményeivel is, mely állapotot poszt-COVID–19-szindrómának (angolul: long-COVID) neveznek. A posztakut-COVID–19-szindrómán belül két szakaszt különítenek el: az akut fertőzést követő 4–12 hét közötti szubakut-COVID–19-szindrómát és a 12 héten túl is fennmaradó tünetekkel jellemzett poszt-COVID–19-szindrómát. A betegséget a tünetek sokféle skálája jellemzi, amelyek több szervrendszerre is kiterjednek. A panaszok kezelése elsősorban a tünetek kezeléséből, valamint multidiszciplináris rehabilitációból áll. A COVID–19 elleni védőoltás a világjárvány mérséklésének egyik legfontosabb eszköze. Az elmúlt évek kiterjedt kutatásai igazolják a COVID–19-vakcinák hatékonyságát. Nemzetközi tanulmányok kimutatták, hogy a vakcina protektív tényezőnek bizonyult a hosszan tartó COVID-tünetekkel szemben. Az összefoglaló tanulmányban irodalmi adatok alapján áttekintettem a COVID–19 tüneteit, epidemiológiáját, átvitelét, patogenezisét, továbbá a poszt-COVID–19-szindróma egyes szervrendszerekre gyakorolt hatásait, a rehabilitáció lehetőségeit és a vakcinák hatását a tünetek kialakulására. Orv Hetil. 2024; 165(33): 1266–1274.
Csiszar A, Jakab F, Valencak TG, et al. Companion animals likely do not spread COVID-19 but may get infected themselves. GeroScience 2020; 42: 1229–1236.
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020; 109: 102433.
Hassell JM, Begon M, Ward MJ, et al. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol Evol. 2017; 32: 55–67.
Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases. Nature 2008; 451: 990–993.
Zeghbib S. Bat related viral zoonoses in Algeria. Doktoral thesis. [Algériai denevérek által terjesztett virális zoonózisok. PhD-értekezés.] Pécsi Tudományegyetem, Biológiai és Sportbiológiai Doktori Iskola, Pécs, 2022. 2. Available from: https://pea.lib.pte.hu/bitstream/handle/pea/33980/safia-zeghbib-tezisek-hun-2022.pdf?sequence=3 [accessed: May 23, 2024]. [Hungarian]
Wang N, Li SY, Yang XL, et al. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virol Sin. 2018; 33: 104–107.
COVID-19 situation reports. [COVID-19 helyzetjelentések.] Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports [accessed: May 23, 2024].
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579: 265–269.
Nikolich-Zugich J, Knox KS, Rios CT, et al. SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. Geroscience 2020; 42: 505–514.
Kim MI, Lee C. Human coronavirus OC43 as a low-risk model to study COVID-19. Viruses 2023; 15: 578.
National Center of Public Health. Guideline related to novel coronavirus identified in 2020 – March 16, 2020. [Eljárásrend a 2020. évben azonosított új koronavírussal kapcsolatban. Nemzeti Népegészségügyi Központ, Budapest, 2020. 03. 16.] Available from: https://www.nnk.gov.hu/index.php/lakossagi-tajekoztatok/koronavirus/567-eljarasrend-a-2020-evben-azonositott-ujkoronavirussal-kapcsolatban-2020-03-16 [accessed: May 23, 2024]. [Hungarian]
Paules CI, Marston HD, Fauci AS. Coronavirus infections – more than just the common cold. JAMA 2020; 323: 707–708.
Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020; 395: 514–523.
Wiersinga WJ, Rhodes A, Cheng AC, et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 2020; 324: 782–793.
Kemenesi G, Kornya L, Tóth GE, et al. Nursing homes and the elderly regarding the COVID-19 pandemic: situation report from Hungary. Geroscience 2020; 42: 1093–1099.
ScholkmannF, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, “long COVID”) and post-COVID-19 vaccination syndrome (PCVS, “post-COVIDvac-syndrome”): similarities and differences. Pathol Res Pract. 2023; 246: 154497.
Ballering AV, van Zon SK, Olde Hartman TC, et al. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study. Lancet 2022; 400(10350): 452–461.
Turner S, Khan MA, Putrino D, et al. Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol Metab. 2023; 34: 321–344.
Davis HE, McCorkell L, Vogel JM, et al. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023; 21: 133–146. Erratum: Nat Rev Microbiol. 2023; 21: 408.
Szekanecz Z, Vályi-Nagy I. Post-acute COVID–19 syndrome. [Posztakut COVID–19-szindróma.] Orv Hetil. 2021; 162: 1067–1078. [Hungarian]
Xu E, Xie Y, Al-Aly Z. Long-term neurologic outcomes of COVID-19. Nat Med. 2022; 28: 2406–2415.
Chopra V, Flanders SA, O’Malley M, et al. Sixty-day outcomes among patients hospitalized with COVID-19. Ann Intern Med. 2021; 174: 576–578.
National Center for Public Health and Pharmacy. Lung involvement in post-COVID syndrome. [Nemzeti Népegészségügyi és Gyógyszerészeti Központ. Tüdőérintettség poszt-COVID szindrómában.] Available from: https://www.egeszsegvonal.gov.hu/t-ty/2093-tudoerintettseg-poszt-covid-szindromaban.html [accessed: May 23, 2024]. [Hungarian]
Raman B, Bluemke DA, Lüscher TF, et al. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022; 43: 1157–1172.
Carfi A, Bernabei R, Landi F, et al. Persistent symptoms in patients after acute COVID-19. JAMA 2020; 324: 603–605.
Tamási J, Kalabay L. Monitoring the development of post-COVID–19 syndrome. [Poszt-COVID–19-szindrómás esetek kialakulásának követése.] Orv Hetil. 2022; 163: 335–342. [Hungarian]
Sarkesh A, Daei Sorkhabi A, Sheykhsaran E, et al. Extrapulmonary clinical manifestations in COVID-19 patients. Am J Trop Med Hyg. 2020; 103: 1783–1796.
Barker-Davies RM, O’Sullivan O, Senaratne KP, et al. The Stanford Hall consensus statement for postCOVID-19 rehabilitation. Br J Sports Med. 2020; 54: 949–959.
Bogos K, Temesi G, Kerpel-Fronius A, et al. Protocol for patients affected by post-acut COVID-19 syndrome. [A COVID-19 vírusfertőzésen átesett – és visszamaradó károsodásokat szenvedő – Poszt-COVID szindrómás betegek gondozási protokollja.] Országos Korányi Pulmonológiai Intézet, Gottsegen György Országos Kardiovaszkuláris Intézet, Országos Klinikai Idegtudományi Intézet, Budapest, 2021. Available from: https://tudogyogyasz.hu/Media/Download/30445 [accessed: May 22, 2024]. [Hungarian]
Taquet M, Dercon Q, Luciano S, et al. Incidence, co-occurrence, and evolution of long-COVID features: a 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLOS Med. 2021; 18: e1003773.
Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021; 38: 101019.
Koren T, Yifa R, Amer M, et al. Insular cortex neurons encode and retrieve specific immune responses. Cell 2021; 184: 5902–5915.e17.
Sterling C, Taub E, Davis D, et al. Structural neuroplastic change after constraint-induced movement therapy in children with cerebral palsy. Pediatrics 2013; 131: e1664–e1669.
Becker JH, Lin JJ, Doernberg M, et al. Assessment of cognitive function in patients after COVID-19 infection. JAMA Netw Open. 2021; 4: e2130645.
Frellick M. Brain fog can persist 8 months after COVID: study. Available from: https://www.medscape.com/viewarticle/961456?form=fpf [accessed: May 23, 2024].
Fontes-Dantas FL, Fernandes GG, Gutman EG, et al. SARS-CoV-2 spike protein induces TLR4-mediated long-term cognitive dysfunction recapitulating post-COVID-19 syndrome in mice. Cell Rep. 2023; 42: 112189.
Mandelkorn U, Genzer S, Choshen-Hillel S, et al. Escalation of sleep disturbances amid the COVID-19 pandemic: a cross-sectional international study. J Clin Sleep Med. 2021; 17: 45–53.
Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021; 218: e20202135.
Szabó A. What should/can be known about post-Covid syndrome? [Mit kell/lehet tudni a poszt-Covid szindrómáról?] Available from: https://semmelweis.hu/hirek/files/2021/11/Poszt-COVID-szindr%C3%B3ma-el%C5%91ad%C3%A1s-Szab%C3%B3-Attila.pdf [accessed: May 23, 2024]. [Hungarian]
Monje M, Iwasaki A. The neurobiology of long COVID. Neuron 2022; 110: 3484–3496.
Mazza MG, Palladini M, De Lorenzo R, et al. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun. 2021; 94: 138–147.
Fekete M, Szarvas Zs, Fazekas-Pongor V, et al. Outpatient rehabilitation programs for COVID–19 patients. [Ambuláns rehabilitációs programok COVID–19-betegek számára.] Orv Hetil. 2021; 162: 1671–1677. [Hungarian]
Kerti M, Zaletnyik Z. Physiotherapy related to post-covid ambulatory care/pulmonary rehabilitation. [Post-covid ambuláns/tüdőgondozói rehabilitációhoz kapcsolódó gyógytorna-fizioterápia.] Available from: https://gyogytornaszok.hu/wp-content/uploads/2021/02/post-covid-ambulans-rehab-gyogytorna-02.18.zz_.pdf [accessed: May 23, 2024]. [Hungarian]
Salehinejad MA, Azarkolah A, Ghanavati E, et al. Circadian disturbances, sleep difficulties and the COVID-19 pandemic. Sleep Med. 2022; 91: 246–252.
Szolnoki N. Hyperbaric oxygen therapy. [Hiperbár oxigénterápia.] IME 2004; 13: 32–33. [Hungarian]
Kuodi P, Gorelik Y, Zayyad H, et al. Association between BNT162b2 vaccination and reported incidence of post-COVID-19 symptoms: cross-sectional study 2020-21, Israel. NPJ Vaccines 2022; 7: 101.
Angyal K, Tajthy AM, Drácz B, et al. The most common gastrointestinal alterations in patients with post-COVID syndrome. [A poszt-COVID-szindrómával diagnosztizált betegek leggyakoribb gastrointestinalis eltérései.] Orv Hetil. 2023; 164: 1206–1212. [Hungarian]
Marra AR, Kobayashi T, Callado GY, et al. The effectiveness of COVID-19 vaccine in the prevention of post-COVID conditions: a systematic literature review and meta-analysis of the latest research. Antimicrob Steward Healthc Epidemiol. 2023; 3(1): e168.
Lundberg-Morris L, Leach S, Xu Y, et al. COVID-19 vaccine effectiveness against post-COVID-19 condition among 589 722 individuals in Sweden: population based cohort study. BMJ 2023; 383: e076990. Erratum: BMJ 2024; 384: q434.
Cezard GI, Denholm RE, Knight R, et al. Impact of vaccination on the association of COVID-19 with cardiovascular diseases: an OpenSAFELY cohort study. Nat Commun. 2024; 15: 2173.
Watanabe A, Iwagami M, Yasuhara J, et al. Protective effect of COVID-19 vaccination against long COVID syndrome: a systematic review and meta-analysis. Vaccine 2023; 41: 1783–1790.
Malden DE, Liu IA, Qian L, et al. Post-COVID conditions following COVID-19 vaccination: a retrospective matched cohort study of patients with SARS-CoV-2 infection. Nat Commun. 2024; 15: 4101.
Zisis SN, Durieux JC, Mouchati C, et al. The protective effect of coronavirus disease 2019 (COVID-19) vaccination on postacute sequelae of COVID-19: a multicenter study from a large national health research network. Open Forum Infect Dis. 2022; 9(7): ofac228.
Ceban F, Kulzhabayeva D, Rodrigues NB, et al. COVID-19 vaccination for the prevention and treatment of long COVID: a systematic review and meta-analysis. Brain Behav Immun. 2023; 111: 211–229. Erratum: Brain Behav Immun. 2024; 115: 758.
Català M, Mercadé-Besora N, Kolde R, et al. The effectiveness of COVID-19 vaccines to prevent long COVID symptoms: staggered cohort study of data from the UK, Spain, and Estonia. Lancet Respir Med. 2024; 12: 225–236.
Graña C, Ghosn L, Evrenoglou T, et al. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst Rev. 2022; 12: CD015477.
Man MA, Rosca D, Bratosin F, et al. Impact of pre-infection COVID-19 vaccination on the incidence and severity of post-COVID syndrome: a systematic review and meta-analysis. Vaccines (Basel) 2024; 12: 189.