Professor László Karmazsin established the contemporary neonatal intensive care at the Department of Pediatrics of the University of Debrecen. His research group’s achievements in the field of neonatal immunobiology contributed to advances in perinatology. Investigating the antioxidant system in neonates, he and his group played a major role in uncovering the pathomechanisms of conditions associated with prematurity. At the same time, corticosteroids, applied as antenatal prophylaxis, and another, endogenous steroid hormone, active vitamin D, have also been shown to significantly impact fetal development and perinatal morbidity. Professor Karmazsin’s group pointed out to the relevance of corticosteroid receptors in mediating the effects of the hormone both in type II alveolar cells of neonates, as well as in leukemic cells. In this publication, we performed a literature review to analyze the interactions of these two steroid hormones on outcome results of the management of premature infants. Additionally, we report the results of a cohort study performed in the Neonatal Intensive Care Unit of the Department of Pediatrics of the University of Debrecen. In the presented small-sample study (n: 37), which focused on very low birth weight preterm infants, we examined the potential correlations between insufficient 25(OH)D levels and neonatal morbidities. In the group of preterm infants with insufficient (<50 nmol/L) 25(OH)D levels (N: 6/37) compared to those with sufficient (50–75 nmol/L) or optimal (>75 nmol/L) 25(OH)D levels (n: 31/37), higher incidences were observed in early (1/6 vs. 0/31; p: 0.021) and late (1/6 vs. 1/31; p: 0.183) neonatal infections, bronchopulmonary dysplasia (3/6 vs. 8/31; p: 0.235), necrotizing enterocolitis (1/6 vs. 1/31; p: 0.183), and the severe form of retinopathy of prematurity (1/6 vs. 0/31; p: 0.060). The difference was statistically significant in the case of early infections. Our results should be evaluated considering the limiting role of the small sample size. Orv Hetil. 2025; 166(12): 443–449.
A Debreceni Egyetem Gyermekgyógyászati Klinikáján Karmazsin László professzor alapozta meg a korszerű neonatológiai intenzív betegellátást. A perinatológiai szakterület fejlődéséhez munkacsoportjának az újszülöttkori immunbiológia terén elért kutatási eredményei is hozzájárultak. A neonatalis antioxidáns rendszer vizsgálata nyomán fontos szerepet vállalt a koraszülöttséggel összefüggő kórképek patomechanizmusának feltárásában. A magzati fejlődésre és a perinatalis morbiditásra az antenatalis kortikoszteroid-profilaxis mellett egy endogén szteroidhormon, a D-vitamin is jelentős hatással bír. Karmazsin László professzor munkacsoportja világított rá a II-es típusú pneumocytákban és leukaemiás sejtekben található kortikoszteroid-receptoroknak az endogén hormonhatás kifejeződésében betöltött meghatározó szerepére. Közleményünkben e két tényező egymással is összefüggő vonatkozásait elemezzük a koraszülöttek kimenetelét illetően, az irodalmi adatok tükrében. Emellett beszámolunk a neonatalis intenzív centrumunkban végzett kohorszvizsgálat eredményeiről. A kis esetszámú (n: 37), igen kis születési súlyú koraszülöttekre fókuszáló vizsgálatban az elégtelen D-vitamin-szint és az újszülöttkori megbetegedések közötti lehetséges összefüggéseket elemeztük. Az általunk vizsgált elégtelen (<50 nmol/l) D-vitamin-szinttel rendelkező koraszülöttek csoportjában (6/37) – szemben az elégséges (50–75 nmol/l), illetve az optimális (>75 nmol/l) 25(OH)D-ellátottsággal rendelkezők csoportjával (31/37) – nagyobb arányban fordult elő a korai (1/6 vs. 0/31; p: 0,021) és a késői (1/6 vs. 1/31; p: 0,183) újszülöttkori fertőzés, a bronchopulmonalis dysplasia (3/6 vs. 8/31; p: 0,235), az enterocolitis necrotisans (1/6 vs. 1/31; p: 0,183), valamint a koraszülöttek retinopathiájának súlyos formája (1/6 vs. 0/31; p: 0,060). Az eltérés a korai fertőzések tekintetében bizonyult szignifikánsnak. Eredményeinket a kis esetszám korlátozó szerepét figyelembe véve kell értékelni. Orv Hetil. 2025; 166(12): 443–449.
Berger TM, Fontana M, Stocker M. The journey towards lung protective respiratory support in preterm neonates. Neonatology 2013; 104: 265–274.
Perin J, Mulick A, Yeung D, et al. Global, regional, and national causes of under-5 mortality in 2000–2019: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc Health 2022; 6: 106–115. Erratum: Lancet Child Adolesc Health 2022; 6: e4.
Ohuma E, Moller AB, Bradley E, et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet 2023; 402: 1261–1271. Erratum: Lancet 2024; 403: 618.
Barfield WD. Public health implications of very preterm birth. Clin Perinatol. 2018; 45: 565–577.
McPherson C, Wambach JA. Prevention and treatment of respiratory distress syndrome in preterm neonates. Neonatal Netw. 2018; 37: 169–177.
McGoldrick E, Stewart F, Parker R, et al. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2020; 12: CD004454.
Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972; 50: 515–525.
Morrison JC, Whybrew WD, Bucovaz ET, et al. Injection of corticosteroids into mother to prevent neonatal respiratory distress syndrome. Am J Obstet Gynecol. 1978; 131: 358–366.
Nagy Gy, Kardos Z, Pohánka O, et al. Prevention of respiratory distress syndrome prior to delivery using steroids. [Steroidprophylaxe des Atemnotsyndroms vor der Geburt.] Zentralbl Gynakol. 1977; 99: 610–617. [German]
Kerepesi T, Arányi P. Glucocorticoid receptors in circulating lymphocytes of premature infants and newborns. Acta Paediatr Hung. 1983; 24: 343–347.
Kerepesi T, Arányi P. Low levels of glucocorticoid binding sites in circulating lymphocytes of premature infants suffering from hyaline membrane disease. J Steroid Biochem. 1985; 22: 151–154.
Ballard PL, Hawgood S, Liley H, et al. Regulation of pulmonary surfactant apoprotein SP 28-36 gene in fetal human lung. Proc Natl Acad Sci U S A 1986; 83: 9527–9531.
Ballard PL, Ertsey R, Gonzales LW, et al. Transcriptional regulation of human pulmonary surfactant proteins SP-B and SP-C by glucocorticoids. Am J Respir Cell Mol Biol. 1996; 14: 599–607.
Kiss C, Kovács I, Kerepesi T, et al. Clinical significance of glucocorticoid receptors in acute leukaemia. Preliminary observations in Hungary and review of the literature. Acta Paediatr Hung. 1987; 28: 127–135.
Toscan CE, Jing D, Mayoh C, et al. Reversal of glucocorticoid resistance in paediatric acute lymphoblastic leukaemia is dependent on restoring BIM expression. Br J Cancer 2020; 122: 1769–1781.
Saugstad OD. Oxidative stress in the newborn – a 30-year perspective. Biol Neonate 2005; 88: 228–236.
Oroszlán Gy, Lakatos L, Matkovics B, et al. Antioxidant effects of D-penicillamine in the neonatal period. [A D-Penicillamin antioxidáns hatásai újszülöttkorban.] Gyermekgyógyászat 1981; 32: 564–570. [Hungarian]
Karmazsin L, Balla Gy, Gömöry A, et al. Investigation of lipid peroxidation during intravenous oxygenation under experimental conditions. [Lipidperoxidáció vizsgálata vénás oxigénadás során kísérleti körülmények között.] Kísérl Orv Tud. 1987; 39: 342–348.
Karmazsin L, Oláh VA, Balla G, et al. Serum antioxidant activity in premature babies. Acta Paediatr Hung. 1990; 30: 217–224.
Matkovics B, Karmazsin L, Kalász H. (eds.) Radicals, ions and tissue damage. Akadémiai Kiadó, Budapest, 1990.
Vento M, Aguar M, Escobar J, et al. Antenatal steroids and antioxidant enzyme activity in preterm infants: influence of gender and timing. Antioxid Redox Signal 2009; 11: 2945–2955.
Frank L, Sosenko RS. Development of lung antioxidant enzyme system in late gestation: possible implications for the prematurely born infant. J Pediatr. 1987; 110: 9–14.
Saugstad OD. Mechanisms of tissue injury by oxygen radicals: implications for neonatal disease. Acta Pædiatr. 1996; 85: 1–4.
Comporti M, Signorini C, Leoncini S, et al. Plasma F2-isoprostanes are elevated in newborns and inversely correlated to gestational age. Free Radic Biol Med. 2004; 37: 724–732.
Cannavò L, Rulli I, Falsaperla R, et al. Ventilation, oxidative stress and risk of brain injury in preterm newborn. Ital J Pediátr. 2020; 46: 100.
Balajthy A, Kovács PE, Márki M, et al. Trends in the management of respiratory distress syndrome in very preterm infants transferred to the Clinical Center of the University of Debrecen. [A respirációs distressz szindróma kezelésének trendjei a Debreceni Egyetem Klinikai Központjába szállított igen éretlen koraszülöttekben.] Orv Hetil. 2023; 164: 571–576. [Hungarian]
Valerio E, Meneghelli M, Stocchero M, et al. The impact of antenatal corticosteroids on the metabolome of preterm newborns: an untargeted approach. Int J Mol Sci. 2024; 25: 5860.
Phokela SS, Peleg S, Moya FR, et al. Regulation of human pulmonary surfactant protein gene expression by 1α,25-dihydroxyvitamin D3. Am J Physiol Lung Cell Mol Physiol. 2005; 289: L617–L626.
Tillis CC, Huang HW, Bi W, et al. Glucocorticoid regulation of human pulmonary surfactant protein-B (SP-B) mRNA stability is independent of activated glucocorticoid receptor. Am J Physiol Lung Cell Mol Physiol. 2011; 300: L940–L950.
Hidalgo AA, Trump DL, Johnson CS. Glucocorticoid regulation of the vitamin D receptor. J Steroid Biochem Mol Biol. 2010; 121: 372–375.
Hidalgo AA, Deeb KK, Pike JW, et al. Dexamethasone enhances 1α,25-dihydroxyvitamin D3 effects by increasing vitamin D receptor transcription. J Biol Chem. 2011; 286: 36228–36237.
Mahboub B, Al Heialy S, Hachim MY, et al. Vitamin D Regulates the expression of glucocorticoid receptors in blood of severe asthmatic patients. J Immunol Res. 2021; 2021: 9947370.
Holick MF. Vitamin D deficiency. N Engl J Med. 2007; 357: 266–281.
Lykkedegn S, Sorensen GL, Beck-Nielsen SS, et al. The impact of vitamin D on fetal and neonatal lung maturation. A systematic review. Am J Physiol Lung Cell Mol Physiol. 2015; 308: L587–L602.
Chen L, Wilson R, Bennett E, et al. Identification of vitamin D sensitive pathways during lung development. Respir Res. 2016; 17: 47.
Lips P. Relative value of 25(OH)D and 1,25(OH)2D measurements. J Bone Miner Res. 2007; 22: 1668–1671.
Jones KS, Assar S, Harnpanich D, et al. 25(OH)D2 half-life is shorter than 25(OH)D3 half-life and is influenced by DBP concentration and genotype. J Clin Endocrinol Metab. 2014; 99: 3373–3381.
Novakovic B, Galati JC, Chen A, et al. Maternal vitamin D predominates over genetic factors in determining neonatal circulating vitamin D concentrations. Am J Clin Nutr. 2012; 96: 188–195.
Jacquemyn Y, Ajaji M, Karepouan N. Vitamin D levels in maternal serum and umbilical cord blood in a multi-ethnic population in Antwerp, Belgium. Facts Views Vis Obgyn. 2013; 5: 3–5.
Karras SN, Shah I, Petroczi A, et al. An observational study reveals that neonatal vitamin D is primarily determined by maternal contributions: implications of a new assay on the roles of vitamin D forms. Nutr J. 2013; 12: 77.
Mulligan ML, Felton SK, Riek AE, et al. Implications of vitamin D deficiency in pregnancy and lactation. Am J Obstet Gynecol. 2010; 202: 429.e1–e9.
Chien MC, Huang CY, Wang JH, et al. Effects of vitamin D in pregnancy on maternal and offspring health-related outcomes: an umbrella review of systematic review and meta-analyses. Nutr Diabetes 2024; 14: 35.
Mutlu N, Esra H, Begum A, et al. Relation of maternal vitamin D status with gestational diabetes mellitus and perinatal outcome. Afr Health Sci. 2015; 15: 523–531.
Boskabadi H, Zakerihamidi M, Faramarzi R. The vitamin D level in umbilical cord blood in premature infants with or without intra-ventricular hemorrhage: a cross-sectional study. Int J Reprod Biomed. 2018; 16: 429–434.
Pál É, Ungvári Z, Várbíró S, et al. Vitamin D deficiency as a risk factor for cerebrovascular diseases. [A D-vitamin-hiány mint a cerebrovascularis betegségek kockázati tényezője.] Orv Hetil. 2024; 165: 1958–1968. [Hungarian]
Lips P, Cashman KD, Lamberg-Allardt C, et al. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society. Eur J Endocrinol. 2019; 180: P23–P54.
Wyskida M, Owczarek A, Szybalska A, et al. Socio-economic determinants of vitamin D deficiency in the older Polish population: results from the PolSenior study. Public Health Nutr. 2018; 21: 1995–2003.
Hussain T, Eimal Latif AH, Malik S, et al. Vitamin D deficiency and associated risk factors in muslim housewives of quetta, pakistan: a cross-sectional study. Cureus 2021; 13: e17643.
Wagner CL, Greer FR; American Academy of Pediatrics Section on Breastfeeding; American Academy of Pediatrics Committee on Nutrition. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 2008; 122: 1142–1152.
Institute of Medicine of the National Academies (US). Dietary reference intakes for calcium and vitamin D. National Academies Press; Washington, DC, 2010.
Hollis BW, Johnson D, Hulsey TC, et al. Vitamin D supplementation during pregnancy: double-blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res. 2011; 26: 2341–2357. Erratum: J Bone Miner Res. 2011; 26: 3001.
Dahma G, Neamtu R, Nitu R, et al. The influence of maternal vitamin D supplementation in pregnancies associated with preeclampsia: a case-control study. Nutrients 2022; 14: 3008.
Zang R, Zhang Y, Zhang H, et al. Association between vitamin D level and neonatal respiratory distress syndrome: a systematic review and meta-analysis. Front Pediatr. 2022; 9: 803143.
Kim YJ, Lim G, Lee R, et al. Association between vitamin D level and respiratory distress syndrome: a systematic review and meta-analysis. PLOS ONE 2023; 18: e0279064.
Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001; 163: 1723–1729.
Mandell E, Seedorf GJ, Ryan S, et al. Antenatal endotoxin disrupts lung vitamin D receptor and 25-hydroxyvitamin D 1α-hydroxylase expression in the developing rat. Am J Physiol Lung Cell Mol Physiol. 2015; 309: L1018–L1026.
Saadoon A, Ambalavanan N, Zinn K, et al. Effect of prenatal versus postnatal vitamin D deficiency on pulmonary structure and function in mice. Am J Respir Cell Mol Biol. 2017; 56: 383–392.
Gazibara T, den Dekker HT, de Jongste JC, et al. Associations of maternal and fetal 25-hydroxyvitamin D levels with childhood lung function and asthma: the Generation R Study. Clin Exp Allergy 2016; 46: 337–346.
Foong RE, Bosco A, Jones AC, et al. The effects of in utero vitamin D deficiency on airway smooth muscle mass and lung function. Am J Respir Cell Mol Biol. 2015; 53: 664–675.
Park HW, Lim G, Park YM, et al. Association between vitamin D level and bronchopulmonary dysplasia: a systematic review and meta-analysis. PLoS ONE 2020; 15: e0235332.
Button KS, Ioannidis JP, Mokrysz C, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013; 14: 365–376. Erratum: Nat Rev Neurosci. 2013; 14: 451.
Doyle LW, Mainzer R, Cheong JL. Systemic postnatal corticosteroids, bronchopulmonary dysplasia, and survival free of cerebral palsy. JAMA Pediatr. 2025: 179: 65–72.
Kim SW, Andronis L, Seppänen AV, et al. Health-related quality of life of children born very preterm: a multinational European cohort study. Qual Life Res. 2023; 32: 47–58.
Varni JW, Burwinkle TM, Sherman SA, et al. Health-related quality of life of children and adolescents with cerebral palsy: hearing the voices of the children. Dev Med Child Neurol. 2005; 47: 592–597.