An increasing number of studies suggest the role of the Purkinje network and Purkinje-myocardial junction in the development of malignant ventricular arrhythmias. Radiofrequency catheter ablation of the distal arborization of the left ventricular Purkinje network may influence the recurrence of ventricular fibrillation. In three patients (all male, age: 52 ± 6.6 years), radiofrequency ablation of the distal left ventricular Purkinje network was performed due to recurrent ventricular fibrillation despite amiodarone treatment. One patient had hypertrophic cardiomyopathy, another had ischemic cardiomyopathy, and the third had idiopathic ventricular fibrillation. Target identification was achieved by mapping Purkinje-originated ventricular extrasystoles induced by isoproterenol infusion (in two patients) and by pace-mapping based on clinical ECG documentation and intracardiac defibrillator recordings (two patients). The radiofrequency ablation target included the area identified by Purkinje potentials along the left ventricular posterior fascicle and, in one case, also the distal arborization of the anterior fascicle. During a mean follow-up period of 17 ± 11 months following the procedure, one patient experienced malignant ventricular arrhythmia, less frequently than before. In recurrent ventricular fibrillation of various origins, catheter ablation of the distal arborization of the left ventricular Purkinje network may reduce the recurrence of malignant ventricular arrhythmias. Orv Hetil. 2025; 166(8): 307–312.
Egyre több vizsgálat eredménye utal a Purkinje-hálózat és a Purkinje-myocardium-junctio szerepére malignus kamrai arrhythmiák kiváltásában. A bal kamrai Purkinje-hálózat distalis arborizációjának rádiófrekvenciás katéterablatiója befolyásolhatja a kamrafibrilláció ismétlődését. Három beteg (mind férfi, életkor: 52 ± 6,6 év) esetében került sor amiodaron ellenére gyakran visszatérő kamrafibrilláció miatt a distalis bal kamrai Purkinje-hálózat ablatiójára. Egyikük hypertrophiás, egy másik ischaemiás cardiomyopathiában szenvedett, a harmadik esetében idiopathiás kamrafibrilláció volt a diagnózis. A célpont azonosítása izoproterenolinfúzióval indukálható, Purkinje-eredetű kamrai extrasystole térképezése (2 beteg esetében) és a klinikai EKG-dokumentáció, illetve a beültethető kardioverter-defibrillátor által rögzített regisztrátumok alapján végzett ’pace-map’ révén (2 beteg) történt. A rádiófrekvenciás ablatio célpontja a Purkinje-potenciálok által azonosított, bal kamrai posterior fasciculus mellett egy esetben magában foglalta az anterior fasciculus distalis arborizációjának területét is. A beavatkozást követő 17 ± 11 hónapos utánkövetés során egy beteg esetében jelentkezett – a korábbiaknál ritkábban – malignus kamrai arrhythmia. Különböző eredetű, visszatérő kamrafibrilláció esetén a bal kamrai Purkinje-hálózat distalis arborizációjának katéteres ablatiója csökkentheti a malignus kamrai arrhythmiák ismétlődését. Orv Hetil. 2025; 166(8): 307–312.
Kiss D, Pál-Jakab Á, Kiss B, et al. Rhythm and rate control in the context of resuscitation and periarrest states. [Ritmus- és frekvenciakontroll újraélesztés kapcsán és keringésmegingással fenyegető szívritmuszavarok esetén.] Orv Hetil. 2023; 164: 504–509. [Hungarian]
Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022; 43: 3997–4126.
Wellens HJ, Schwartz PJ, Lindemans FW, et al. Risk stratification for sudden cardiac death: current status and challenges for the future. Eur Heart J. 2014; 35: 1642–1651.
Connolly SJ, Hallstrom AP, Cappato R, et al. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs implantable defibrillator study. Cardiac arrest study Hamburg. Canadian implantable defibrillator study. Eur Heart J. 2000; 21: 2071–2078.
Belhassen B, Glick A, Viskin S. Excellent long-term reproducibility of the electrophysiologic efficacy of quinidine in patients with idiopathic ventricular fibrillation and Brugada syndrome. Pacing Clin Electrophysiol. 2009; 32: 294–301.
Malhi N, Cheung CC, Deif B, et al. Challenge and impact of quinidine access in sudden death syndromes: a national experience. JACC Clin Electrophysiol. 2019; 5: 376–382.
Nakamura T, Schaeffer B, Tanigawa S, et al. Catheter ablation of polymorphic ventricular tachycardia/fibrillation in patients with and without structural heart disease. Heart Rhythm. 2019; 16: 1021–1027.
Haïssaguerre M, Shoda M, Jaïs P, et al. Mapping and ablation of idiopathic ventricular fibrillation. Circulation 2002; 106: 962–967.
Knecht S, Sacher F, Wright M, et al. Long-term follow-up of idiopathic ventricular fibrillation ablation: a multicenter study. J Am Coll Cardiol. 2009; 54: 522–528.
Nogami A. Purkinje-related arrhythmias part II: polymorphic ventricular tachycardia and ventricular fibrillation. Pacing Clin Electrophysiol. 2011; 34: 1034–1049.
Mihálcz A, Szili-Török T, Tóth K. Catheter ablation of ventricular tachycardias. [Kamrai tachycardiák katéterablatiós kezelése.] Orv Hetil. 2015; 156: 995–1002. [Hungarian]
Imnadze G, Zerm T. Prevention of ventricular fibrillation through de-networking of the Purkinje system: proof-of-concept paper on the substrate modification of the Purkinje network. Pacing Clin Electrophysiol. 2019; 42: 1285–1290.
Sciacca V, Fink T, Guckel D, et al. Catheter ablation in patients with ventricular fibrillation by purkinje de-networking. Front Cardiovasc Med. 2022; 9: 956627.
Haissaguerre M, Cheniti G, Hocini M, et al. Purkinje network and myocardial substrate at the onset of human ventricular fibrillation: implications for catheter ablation. Eur Heart J. 2022; 43: 1234–1247.
Coronel R, Potse M, Haïssaguerre M, et al. Why ablation of sites with Purkinje activation is antiarrhythmic: the interplay between fast activation and arrhythmogenesis. Front Physiol. 2021; 12: 648396.
Surget E, Duchateau J, Lavergne T, et al. Long-term freedom from ventricular fibrillation despite persistent Purkinje ectopy after catheter ablation. HeartRhythm Case Rep. 2022; 8: 259–263.
Gellér L, Szilágyi S, Solymossy K, et al. Ablation of idiopathic fascicular ventricular tachycardia. [Idiopathiás fascicularis kamrai tachycardia ablatiója.] Orv Hetil. 2009; 150: 1463–1469. [Hungarian]
Jordaens L. A clinical approach to arrhythmias revisited in 2018: from ECG over noninvasive and invasive electrophysiology to advanced imaging. Neth Heart J. 2018; 26: 182–189.
Haissaguerre M, Vigmond E, Stuyvers B, et al. Ventricular arrhythmias and the His-Purkinje system. Nat Rev Cardiol. 2016; 13: 155–166.
Nogami A, Komatsu Y, Talib AK, et al. Purkinje-related ventricular tachycardia and ventricular fibrillation: solved and unsolved questions. JACC Clin Electrophysiol. 2023; 9: 2172–2196.
Berenfeld O, Jalife J. Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circ Res. 1998; 82: 1063–1077.
Dosdall DJ, Tabereaux PB, Kim JJ, et al. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in dogs. Am J Physiol Heart Circ Physiol. 2008; 295: H883–H889.
Hasegawa T, Nogami A, Aonuma K, et al. Termination of long-duration ventricular fibrillation by catheter ablation. Heart Rhythm Case Rep. 2020; 6: 955–959.