Fetal growth restriction (FGR) as a common pregnancy complication is generally defined as the failure of a fetus to achieve its genetically determined full growth potential due to placental dysfunction. Early-onset (<32. gestational week) FGR is associated strongly with abnormal trophoblastic invasion and consequent placental insufficiency. Conditions leading to FGR are the disorders inherent to the fetal-placental-maternal unit, fetal malnutrition, resulting in a significantly increased risk of stillbirth, neonatal morbidity, neonatal death, and long-term adverse outcome. Once the fetal size, typically using estimated fetal weight and/or abdominal circumference below the tenth percentile compared to gestational age reference standards, multimodality assessment (including Doppler velocimetry in umbilical, and middle cerebral arteries, CTG and biophysical profile) is recommended. At present, the most recognized criteria to define early and late FGR are those derived from an international Delphi survey consensus. Early diagnosis, close follow-up and timely delivery of pregnancies with FGR are of crucial importance for perinatal short- and long-term outcome. The main distinction between small for gestational age (SGA) and growth-restricted fetus is that the healthy SGA fetus may be small but not at increased risk of adverse perinatal outcome. Orv Hetil. 2025; 166(9): 331–340.
A magzati sorvadás (fetal growth restriction – FGR) gyakori szülészeti szövődmény, amelyről akkor beszélünk, ha a méhlepény diszfunkciója miatt a magzat nem képes teljesíteni a genetikailag determinált teljes növekedési potenciálját. A korai kiindulású (<32. gestatiós hét) sorvadás jelentős mértékben társul kóros trophoblastinvázióval és következményes lepényi elégtelenséggel. A magzati sorvadáshoz vezető állapotok a fetoplacentomaternalis egység betegségei, a magzati malnutritio, amely a halvaszületés, a neonatalis morbiditás és mortalitás, valamint a felnőttkorban manifesztálódó metabolikus betegségek kockázatának szignifikáns emelkedésével jár. Ha a magzat mérete a becsült magzati súlyt és a haskörfogatot mérve a gestatiós kori referenciastandardok 10. percentilise alá esik, több modalitású kivizsgálás (a Doppler-áramlás mérése az a. umbilicalis és a. cerebri media erekben, kardiotokográfia és biofizikai profil) ajánlott. A korai (<32. gestatiós hét) és a késői (≥32. gestatiós hét) kiindulású sorvadás legjelentősebb jellegzetességeit a nemzetközi Delphi-konszenzus tartalmazza. A korai diagnózis, a szoros követés és az időzített szülés alapvető jelentőségű a magzati sorvadás rövid és hosszú távú kedvezőtlen perinatalis kimenetelének megelőzésében. A korához képest kis súlyú (small for gestational age – SGA), de egyébként egészséges magzat/újszülött és a sorvadt, növekedésben visszamaradt magzat között az a különbség, hogy az SGA magzatot/újszülöttet nem fenyegeti lepényi diszfunkció és kedvezőtlen perinatalis, valamint hosszú távú következmény, ellentétben az FGR-magzattal. Orv Hetil. 2025; 166(9): 331–340.
Papp Z. Textbook of obstetrics and gynecology. Seventh updated edition. [A szülészet-nőgyógyászat tankönyve. Hetedik, frissített kiadás.] Semmelweis Kiadó, Budapest, 2023. [Hungarian]
Svensson AC, Pawitan Y, Cnattingius S, et al. Familial aggregation of small-for-gestational-age births: the importance of fetal genetic effects. Am J Obstet Gynecol. 2006; 194: 475–479.
Lunde A, Melve KK, Gjessing HK, et al. Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data. Am J Epidemiol. 2007; 165: 734–741.
Resnik R. Intrauterine growth restriction. Obstet Gynecol. 2002; 99: 490–496.
Lubchenco LO, Hansman C, Dressler M, et al. Intrauterine growth as estimated from liveborn birth-weight data at 24 to 42 weeks of gestation. Pediatrics 1963; 32: 793–800.
Manning FA. Intrauterine growth retardation. Fetal medicine: principal and practice. Appleton & Lange, Norwalk, CT, 1995; p. 317.
Bazsó J. A comparison of normal fetal growth and its variation by the birth weight percentiles from different populations. Biol Neonat. 1969; 14: 80–89.
Peleg D, Kennedy CM, Hunter SH. Intrauterine growth restriction: identification and management. Am Fam Physician 1998; 58: 453–460.; 466–467.
Francis JH, Permezel M, Davey MA. Perinatal mortality by birthweight centile. Aust N Z J Obstet Gynecol. 2014; 54: 354–359.
Flenady V, Wojcieszek AM, Middleton P, et al. Stillbirths: recall to action in high-income countries. Lancet 2016; 387: 691–702. Erratum: Lancet 2021; 398(10306): 1132.
Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 2016; 594: 807–823.
Lees CC, Marlow N, van Wassenaer-Leemhuis A, et al. 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet 2015; 385: 2162–2172. Erratum: Lancet. 2015; 385(9983): 2152.
Barker DJ, Osmond C, Forsén TJ, et al. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005; 353: 1802–1809.
Van Wyk L, Boers KE, van der Post JA, et al. and DIGITAT Study Group. Effects on (neuro)developmental and behavioral outcome at 2 years of age of induced labor compared with expectant management in intrauterine growth-restricted infants: long-term outcomes of the DIGITAT trial. Am J Obstet Gynecol. 2012; 206: 406.e1–406.e7.
Boers KE, van Wyk L, van der Post JA, et al. and DIGITAT Study Group. Neonatal morbidity after induction vs expectant monitoring in intrauterine growth restriction at term: a subanalysis of the DIGITAT RCT. Am J Obstet Gynecol. 2012; 206: 344.e1–344.e7.
Spencer R, Ambler G, Brodszki J, et al. and EVERREST Consortium. EVERREST prospective study: a 6-year prospective study to define the clinical and biological characteristics of pregnancies affected by severe early onset fetal growth restriction. BMC Pregnancy Childbirth 2017; 17: 43.
Nohuz E, Rivière O, Coste K, et al. Prenatal identification of small-for-gestational-age and risk of neonatal morbidity and stillbirth. Ultrasound Obstet Gynecol. 2020; 55: 621–628.
Poon LC, Tan MY, Yerlikaya G, et al. Birth weight in live births and stillbirths. Ultrasound Obstet Gynecol. 2016; 48: 602–606.
Bligh LN, Flatley CJ, Kumar S. Reduced growth velocity at term is associated with adverse neonatal outcomes in non-small for gestational age infants. Eur J Obstet Gynecol Reprod Biol. 2019; 240: 125–129.
Morales-Roselló J, Khalil A, Morlando M, et al. Changes in fetal Doppler indices as a marker of failure to reach growth potential at term. Ultrasound Obstet Gynecol. 2014; 43: 303–310.
Prior T, Paramasivam G, Bennett P, et al. Are fetuses that fail to achieve their growth potential at increased risk of intrapartum compromise? Ultrasound Obstet Gynecol. 2015; 46: 460–464.
Sovio U, White IR, Dacey A, et al. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: a prospective cohort study. Lancet 2015; 386: 2089–2097. Erratum: Lancet 2015; 386: 2058.
Iliodromiti S, Mackay DF, Smith GC, et al. Customised and noncustomised birth weight centiles and prediction of stillbirth and infant mortality and morbidity: a cohort study of 979,912 term singleton pregnancies in Scotland. PLoS Med. 2017; 14: e1002228.
Moraitis AA, Wood AM, Fleming M, et al. Birth weight percentile and the risk of term perinatal death. Obstet Gynecol. 2014; 124: 274–283.
Vasak B, Koenen SV, Koster MP, et al. Human fetal growth is constrained below optimal for perinatal survival. Ultrasound Obstet Gynecol. 2015; 45: 162–167.
Berkő P, Joubert K. Intrauterine growth restriction and obstetrical management of IUGR. [Az intrauterin növekedési retardáció és annak szülészeti ellátása.] Magy Nőorv L. 2015; 78: 134–145. [Hungarian]
Belics Z. The fetal growth restriction: diagnosis and management. [A magzati növekedési restrikció: kórismézés és ellátás.] Magy Nőorv L. 2020; 83: 70–79. [Hungarian]
Stacey T, Thompson JM, Mitchell EA, et al. Antenatal care, identification of suboptimal fetal growth and risk of late stillbirth: findings from the Auckland Stillbirth Study. Aust N Z J Obstet Gynaecol. 2012; 52: 242–247.
Lindqvist PG, Molin J. Does antenatal identification of small-for-gestational age fetuses significantly improve their outcome? Ultrasound Obstet Gynecol. 2005; 25: 258–264.
Mifsud W, Sebire NJ. Placental pathology in early-onset and late-onset fetal growth restriction. Fetal Diagn Ther. 2014; 36: 117–128.
Lees CC, Stampalija T, Baschat A, et al. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol. 2020; 56: 298–312.
American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins – Obstetrics and the Society for Maternal-Fetal Medicin. ACOG Practice Bulletin No. 204: Fetal Growth Restriction. Obstet Gynecol. 2019; 133: e97–e109.
Bhide A, Acharya G, Bilardo CM, et al. ISUOG practice guidelines: use of Doppler ultrasonography in obstetrics. Ultrasound Obstet Gynecol. 2013; 41: 233–239.
Salomon LJ, Alfirevic Z, Da Silva Costa F, et al. ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet Gynecol. 2019; 53: 715–723.
Vayssière C, Sentilhes L, Ego A, et al. Fetal growth restriction and intra-uterine growth restriction: guidelines for clinical practice from the French College of Gynecologists and Obstetricians. Eur J Obstet Gynecol Reprod Biol. 2015; 193: 10–18.
New Zealand Maternal Fetal Medicine Network. Guideline for the management of suspected small for gestational age singleton pregnancies and infants after 34 weeks’ gestation. New Zealand Maternal Fetal Medicine Network, Auckland, 2014.
Giouleka S, Tsakiridis I, Mamopoulos A, et al. Fetal growth restriction: a comprehensive review of major guidelines. Obstet Gynecol Surv. 2023; 78: 690–708.
Sagi-Dain L, Peleg A, Sagi S. Risk for chromosomal aberrations in apparently isolated intrauterine growth restriction: a systematic review. Prenat Diagn. 2017; 37: 1061–1066.
Walker DM, Marlow N, Upstone L, et al. The Growth Restriction Intervention Trial: long-term outcomes in a randomized trial of timing of delivery in fetal growth restriction. Am J Obstet Gynecol. 2011; 204: 34.e1–34.e9.
Duhig KE, Myers J, Seed PT, et al. PARROT trial group. Placental growth factor testing to assess women with suspected pre-eclampsia: a multicentre, pragmatic, stepped-wedge cluster-randomised controlled trial. Lancet 2019; 393: 1807–1818.
Gordijn SJ, Beune IM, Thilaganathan B, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016; 48: 333–339.
Molina LC, Odibo L, Zientara S, et al. Validation of Delphi procedure consensus criteria for defining fetal growth restriction. Ultrasound Obstet Gynecol. 2020; 56: 61–66.
Levytska K, Higgins M, Keating S, et al. Placental pathology in relation to uterine artery Doppler findings in pregnancies with severe intrauterine growth restriction and abnormal umbilical artery Doppler changes. Am J Perinatol. 2017; 34: 451–457.
McCowan LM, Figueras F, Anderson NH. Evidence-based national guidelines for the management of suspected fetal growth restriction: comparison, consensus, and controversy. Am J Obstet Gynecol. 2018; 218: S855–S868.
Ogge G, Chaiworapongsa T, Romero R, et al. Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia. J Perinat Med. 2011; 39: 641–652.
Egbor M, Ansari T, Morris N, et al. Morphometric placental villous and vascular abnormalities in early- and late-onset pre-eclampsia with and without fetal growth restriction. BJOG 2006; 113: 580–589.
Stampalija T, Casati D, Monasta L, et al. Brain sparing effect in growth-restricted fetuses is associated with decreased cardiac acceleration and deceleration capacities: a case-control study. BJOG 2016; 123: 1947–1954.
Baschat AA, Cosmi E, Bilardo CM, et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol. 2007; 109: 253–261.
Ferrazzi E, Bozzo M, Rigano S, et al. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol. 2002; 19: 140–146.
Mateus J, Newman RB, Zhang C. Fetal growth patterns in pregnancy associated hypertensive disorders: NICHD fetal growth studies. Am J Obstet Gynecol. 2019; 221: 635.e1–635.e16.
Wyrwoll CS, Noble J, Thomson A, et al. Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess. Proc Natl Acad Sci USA 2016; 113: 6265–6270.
Figueras F, Meler E, Eixarch E, et al. Association of smoking during pregnancy and fetal growth restriction: subgroups of higher susceptibility. Eur J Obstet Gynecol Reprod Biol. 2008; 138: 171–175.
Cosmi E, Ambrosini G, D’Antona D, et al. Doppler, cardiotocography, and biophysical profile changes in growth-restricted fetuses. Obstet Gynecol. 2005; 106: 1240–1245.
Crimmins S, Desai A, Block-Abraham D, et al. A comparison of Doppler and biophysical findings between liveborn and stillborn growth-restricted fetuses. Am J Obstet Gynecol. 2014; 211: 669.e1–669.e10.
Ting JY, Kingdom JC, Shah PS. Antenatal glucocorticoids, magnesium sulfate, and mode of birth in preterm fetal small for gestational age. Am J Obstet Gynecol. 2018; 218: S818–S828.
Magann EF, Haram K, Ounpraseuth S, et al. Use of antenatal corticosteroids in special circumstances: a comprehensive review. Acta Obstet Gynecol Scand. 2017; 96: 395–409.
Stockley EL, Ting JY, Kingdom JC, et al. Canadian Neonatal Network; Canadian Neonatal Follow-up Network; Canadian Preterm Birth Network Investigators. Intrapartum magnesium sulfate is associated with neuroprotection in growth-restricted fetuses. Am J Obstet Gynecol. 2018; 219: 606.e1–606.e8.
Bilardo CM, Hecher K, Visser GH, et al. Severe fetal growth restriction at 26–32 weeks: key messages from the TRUFFLE study. Ultrasound Obstet Gynecol. 2017; 50: 285–290.
Turan S, Turan OM, Berg C, et al. Computerized fetal heart rate analysis, Doppler ultrasound and biophysical profile score in the prediction of acid-base status of growth-restricted fetuses. Ultrasound Obstet Gynecol. 2007; 30: 750–756.
Parra-Saavedra M, Crovetto F, Triunfo S, Placental findings in late-onset SGA births without Doppler signs of placental insufficiency. Placenta 2013; 34: 1136–1141.
Parra-Saavedra M, Crovetto F, Triunfo S, et al. Added value of umbilical vein flow as a predictor of perinatal outcome in term small-for-gestational-age fetuses. Ultrasound Obstet Gynecol. 2013; 42: 189–195.
Savchev S, Figueras F, Sanz-Cortes M, et al. Evaluation of an optimal gestational age cut-off for the definition of early- and late-onset fetal growth restriction. Fetal Diagn Ther. 2014; 36: 99–105.
Cruz-Martínez R, Figueras F, Hernandez-Andrade E, et al. Fetal brain Doppler to predict cesarean delivery for nonreassuring fetal status in term small-for-gestational-age fetuses. Obstet Gynecol. 2011; 117: 618–626.
Severi FM, Bocchi C, Visentin A, et al. Uterine and fetal cerebral Doppler predict the outcome of third-trimester small-for-gestational age fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol. 2002; 19: 225–228.
Hershkovitz R, Kingdom JC, Geary M, et al. Fetal cerebral blood flow redistribution in late gestation: identification of compromise in small fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol. 2000; 15: 209–212.
Di Mascio D, Rizzo G, Buca D, et al. Comparison between cerebroplacental ratio and umbilicocerebral ratio in predicting adverse perinatal outcome at term. Eur J Obstet Gynecol Reprod Biol. 2020; 252: 439–443.
Robson SC, Martin WL, Morris RK. The investigation and management of the small-for-gestational-age fetus. Green-top guideline No. 31. Guidelines Committee of the Royal College of Obstetricians and Gynaecologists, London. 2nd edition February 2013. Minor revisions – January 2014.
Stampalija T, Thornton J, Marlow N, et al., on behalf of the TRUFFLE-2 Group. Fetal cerebral Doppler changes and outcome in late preterm fetal growth restriction: prospective cohort study. Ultrasound Obstet Gynecol. 2020; 56: 173–181.
Lees CC, Romero R, Stampalija T, et al. Clinical opinion. The diagnosis and management of suspected fetal growth restriction: an evidence-based approach. Am J Obstet Gynecol. 2022; 226: 366–378.
Caradeux J, Martinez-Portilla RJ, Peguero A, et al. Diagnostic performance of third-trimester ultrasound for the prediction of late-onset fetal growth restriction: a systematic review and meta-analysis. Am J Obstet Gynecol. 2019; 220: 449–459.e19.
Van Wassenaer-Leemhuis AG, Marlow N, Lees C, et al. and TRUFFLE investigators. The association of neonatal morbidity with long-term neurological outcome in infants who were growth restricted and preterm at birth: secondary analyses from TRUFFLE (Trial of Randomized Umbilical and Fetal Flow in Europe). BJOG 2017; 124: 1072–1078.
Pay A, Frøen JF, Staff AC, et al. Prediction of small-for-gestational-age status by symphysis-fundus height: a registry-based population cohort study. BJOG 2016; 123: 1167–1173.
Chauhan SP, Rouse DJ, Ananth CV. Screening for intrauterine growth restriction in uncomplicated pregnancies: time for action. Am J Perinatol. 2013; 30: 33–39.
De Reu PA, Oosterbaan HP, Smits LJ, et al. Avoidable mortality in small-for-gestational-age children in the Netherlands. J Perinat Med. 2010; 38: 311–318.
Bricker L, Medley N, Pratt JJ. Routine ultrasound in late pregnancy (after 24 weeks’ gestation). Cochrane Database Syst Rev. 2015; 2015: CD001451.
Kaur S, Picconi JL, Chadha R, et al. Biophysical profile in the treatment of intrauterine growth-restricted fetuses who weigh <1000 g. Am J Obstet Gynecol. 2008; 199: 264.e1–264.e4.
Habek D, Salihagić A, Jugóivá D, et al. Doppler cerebro-umbilical ratio and fetal biophysical profile in the assessment of peripartal cardiotocography in growth-retarded fetuses. Fetal Diagn Ther. 2007; 22: 452–456.
Marchand C, Köppe J, Köster HA, et al. Fetal growth restriction: comparison of biometric parameters. J Pers Med. 2022; 12: 1125.
Krantz D, Goetzl L, Simpson JL, et al. Association of extreme first-trimester free human chorionic gonadotropin-beta, pregnancy-associated plasma protein A, and nuchal translucency with intrauterine growth restriction and other adverse pregnancy outcomes. Am J Obstet Gynecol. 2004; 191: 1452–1458.
Kirkegaard I, Henriksen TB, Uldbjerg N. Early fetal growth, PAPP-A and free β-hCG in relation to risk of delivering a small-for-gestational age infant. Ultrasound Obstet Gynecol 2011; 37: 341–347.
Society for Maternal-Fetal Medicine Publications Committee; Berkley E, Chauhan SP, Abuhamad A. Doppler assessment of the fetus with intrauterine growth restriction. Am J Obstet Gynecol. 2012; 206: 300–308. Erratum: Am J Obstet Gynecol. 2012; 206: 508. Erratum: Am J Obstet Gynecol. 2015; 212: 246.
Grantz KL, Kim S, Grobman WA, et al. Fetal growth velocity: the NICHD fetal growth studies. Am J Obstet Gynecol. 2018; 219: 285.e1–285.e36.
Resnik R, Mari G. Fetal growth restriction: evaluation. UpToDate 2020. Available from: https://www.uptodate.com/contents/fetal-growth-restriction-evaluation [accessed: January 06, 2020].
Stampalija T, Arabin B, Wolf H, et al. TRUFFLE investigators. Is middle cerebral artery Doppler related to neonatal and 2-year infant outcome in early fetal growth restriction? Am J Obstet Gynecol. 2017; 216: 521.e1–521.e13.
Vollgraff Heidweiller-Schreurs CA, De Boer MA, Heymans MW, et al. Prognostic accuracy of cerebroplacental ratio and middle cerebral artery Doppler for adverse perinatal outcome: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018; 51: 313–322.
Akolekar R, Ciobanu A, Zingler E, et al. Routine assessment of cerebroplacental ratio at 35–37 weeks’ gestation in the prediction of adverse perinatal outcome. Am J Obstet Gynecol. 2019; 221: 65.e1–65.e18.
Oros D, Ruiz-Martinez S, Staines-Urias E, et al. Reference ranges for Doppler indices of umbilical and fetal middle cerebral arteries and cerebroplacental ratio: systematic review. Ultrasound Obstet Gynecol. 2019; 53: 454–464.
Conde-Agudelo A, Villar J, Kennedy SH, et al. Predictive accuracy of cerebroplacental ratio for adverse perinatal and neurodevelopmental outcomes in suspected fetal growth restriction: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018; 52: 430–441.
Turan OM, Turan S, Berg C, et al. Duration of persistent abnormal ductus venosus flow and its impact on perinatal outcome in fetal growth restriction. Ultrasound Obstet Gynecol. 2011; 38: 295–302.
Lefkou E, Mamopoulos A, Dagklis T, et al. Pravastatin improves pregnancy outcomes in obstetric antiphospholipid syndrome refractory to antithrombotic therapy. J Clin Invest. 2016; 126: 2933–2940.
McLaughlin K, Nadeem L, Wat J, et al. Low molecular weight heparin promotes transcription and release of placental growth factor from endothelial cells. Am J Physiol Heart Circ Physiol. 2020; 318: H1008–H1017.
Nageotte MP, Towers CV, Asrat T, et al. Perinatal outcome with the modified biophysical profile. Am J Obstet Gynecol. 1994; 170: 1672–1676.
Dayal AK, Manning FA, Berck DJ, et al. Fetal death after normal biophysical profile score: an eighteen-year experience. Am J Obstet Gynecol. 1999; 181: 1231–1236.
Gülmezoglu AM, Hofmeyr GJ. Bed rest in hospital for suspected impaired fetal growth. Cochrane Database Syst Rev 2000; 1996: CD000034.
Deter RL, Lee W, Yeo L, et al. Individualized growth assessment: conceptual framework and practical implementation for the evaluation of fetal growth and neonatal growth outcome. Am J Obstet Gynecol. 2018; 218: S656–S678.
Yu YH, Shen LY, Zou H, et al. Heparin for patients with growth restricted fetus: a prospective randomized controlled trial. J Matern Fetal Neonatal Med. 2010; 23: 980–987.
Ferreira RD, Negrini R, Bernardo WM, et al. The effects of sildenafil in maternal and fetal outcomes in pregnancy: a systematic review and meta-analysis. PLOS ONE 2019; 14: e0219732. Retraction: PLOS ONE 2024; 19: e0310291.
Robertson MC, Murila F, Tong S, et al. Predicting perinatal outcome through changes in umbilical artery Doppler studies after antenatal corticosteroids in the growth-restricted fetus. Obstet Gynecol. 2009; 113: 636–640.
Simchen MJ, Alkazaleh F, Adamson SL, et al. The fetal cardiovascular response to antenatal steroids in severe early-onset intrauterine growth restriction. Am J Obstet Gynecol. 2004; 190: 296–304.
Nozaki AM, Francisco RP, Fonseca ES, et al. Fetal hemodynamic changes following maternal betamethasone administration in pregnancies with fetal growth restriction and absent end-diastolic flow in the umbilical artery. Acta Obstet Gynecol Scand. 2009; 88: 350–354.
Habib AS. Anaesthesia for caesarean delivery of growth-restricted foetuses: a bird in the hand is worth two in the bush. Eur J Anaesthesiol. 2013; 30: 5–6.
Jain K, Bhardwaj N, Sharma A, et al. A randomised comparison of the effects of low-dose spinal or general anaesthesia on umbilical cord blood gases during caesarean delivery of growth-restricted foetuses with impaired Doppler flow. Eur J Anaesthesiol. 2013; 30: 9–15.
Baschat AA. Planning management and delivery of the growth-restricted fetus. Best Pract Res Clin Obstet Gynaecol. 2018; 49: 53–65.