Abbott, L. K. & Robson, A. D., 1985. Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol. 99. 245–255.
Aguilar, S. & Van Diest, A., 1981. Rock phosphate mobilization induced by the alkaline uptake pattern of legumes utilizing symbiontically fixed nitrogen. Plant and Soil. 61. 27–42.
Alloush, G. A. & Clark, R. B., 2001. Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic soil. Commun. Soil Sci. Plant Anal. 32. 231–254.
Amer, F. et al., 1955. Characterization of soil phosphorus by anion exchange resin adsorption and 32P-equilibration. Plant and Soil. 6. 391–408.
Anderson, D. L., Kussow, W. R. & Corey, R. B., 1985. Phosphate rock dissolution in soil. Indications from plant growth studies. Soil Sci. Soc. Am. J. 49. 918–925.
Anderson, G. C. & Sale, P. W. G., 1993. Application of the Kirk and Nye phosphate rock dissolution model. Fert. Res. 35. 61–66.
Azcón-Aguilar, C. & Barea, J. M., 1992. Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Mycorrhizal Functioning: An Integrative Plant-Fungal Process. (Ed.: ALLEN, M. I.) 163–198. Chapman Hall. New York.
Balláné KORNIS H. & Sarkadi J., 1951. Foszforittal és apatittal érlelt istállótrágyák laboratóriumi vizsgálata. Agrokémia és Talajtan. 1. 471–477.
Bangar, K. C., Yadav, K. S. & Mishra, M. M., 1985. Transformation of rock phosphate during composting and the effect of humic acid. Plant and Soil. 85. 259–266.
Barbarick, K. A., Lai, I. M. & Eberl, D. D., 1990. Exchange fertilizer (phosphate rocks plus ammonium-zeolite) effects on sorghum-Sudangrass. Soil Sci. Soc. Am. J. 54. 911–915.
Barrow, N. J. & Shaw, T. C., 1975. The slow reactions between soil and anions. 2. Effect of time and temperature on the decrease in phosphate concentration in the soil solution. Soil Sci. 119. 167–177.
Bekele, T. et al., 1983. An evaluation of plant-borne factors promoting the solubilization of alkaline rock phosphates. Plant and Soil. 75. 361–378.
Bertrand, I. et al., 1999. Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic phosphated calcite and goethite. Plant and Soil. 211. 111–119.
Bésán J.-NÉ , 1992. Nyersfoszfát bázisú mûtrágyák szerepe a gazdaságos mûtrágyázásban. Agrofórum 1992/1. Különszám. 41–43.
Bethlenfalvay, G. J., Brown, M. S. & Pacovsky, R. S., 1982. Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: Development of the host plant. Phytopathol. 72. 889–893.
Bolan, N. S., Robson, A. D. & Barrow, N. J., 1987. Effects of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant and Soil. 99. 401–410.
Bolan, N. S., White, R. E. & Hedley, M. J., 1990. A review of the actual and potenzial use of phosphate rocks as fertilizers for direct application in Australia and New Zealand. Aust. J. Agric. Res. 30. 297–313.
Bolland, M. D. A. , 1993. Summary of research on soil testing for rock phosphate fertilizers in Western Australia. Fertilizer Res. 35. 83–91.
Bolland, M. D. A., Gilkes, R. J. & Allen, D. G., 1988. The residual value of superphosphate and rock phosphate for lateritic soils and its evaluation using three soil phosphate test. Fert. Res. 15. 253–280.
Bolland, M. D. A., Kumar, V. & GILKES R. J., 1994. A comparison of five soil phosphorus tests for crop species for soil previously fertilized with superphosphate and rock phosphate. Fert. Res. 37. 125–132.
Bolland, M. D. A. et al., 1992. Agronomic effectiveness of partially acidulated rock phosphate and fused calcium-magnesium phosphate compared with superphosphate. Fert. Res. 32. 169–193.
Bray, R. H. & Kurtz, L. T., 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59. 39–45.
Buzás, I.-NÉ, CSERNÁTONY, CS.-NÉ & HERCZEG A., 1986. A magyarországi talajok pH csökkenése. Agrokémia és Talajtan. 35. 63–71.
Cakmak, I. & Marschner, H., 1990. Decrease in nitrate uptake and increase in proton release in zinc deficient cotton, sunflower and buckwheat plants. Plant and Soil. 129. 261–268.
Caro, J. H. & Hill, W. L., 1956. Characteristics and fertilizer value of phosphate rock from different fields. J. Agric. Food Chem. 4. 684–687.
Casanova, E. F. , 1995. Agronomic evaluation of fertilizers with special reference to natural and modified phosphate rock. Fertilizer Res. 41. 211–218.
Cathcart, J. B. , 1980. The phosphate industry of the United States. In: The Role of Phosphorus in Agriculture. (Eds.: KHASAWNEH, F. E., SAMPLE, E. C. & KAMPRATH, E. J.) 19–41. Soil Sci. Soc. Am. Madison, WI.
Chang, S. C. & Jackson, M. L., 1957. Fractionation of soil phosphorus. Soil Sci. 84. 133–144.
Chien, S. H. , 1977. Dissolution rates of phosphate rocks. Soil Sci. Soc. Am. J. 41. 656–657.
Chien, S. H. , 1978. Interpretation of Bray I-extractable phosphorus from acid soil treated with phosphate rocks. Soil Sci. 126. 34–39.
Chien, S. H. , 1979. Dissolution of phosphate rock in acid soils as influenced by nitrogen and potassium fertilizers. Soil Sci. 127. 371–375.
Chien, S. H. , 1993. Solubility assessment for fertilizer containing phosphate rock. Fert. Res. 35. 93–99.
Chien, S. H. & Black, C. A., 1976. Free energy of formation of carbonate apatites in some phosphate rocks. Soil Sci. Soc. Am. J. 40. 234–239.
Chien, S. H. & Hammond, L. L., 1978. A comparison of various laboratory methods for predicting the agronomic potential of phosphate rocks for direct application. Soil Sci. Soc. Am. J. 42. 935–939.
Chien, S. H. & Menon, R. G., 1995. Factors affecting the agronomic effectivnes of phosphate rock for direct application. Fert. Res. 41. 227–234.
Chien, S. H., Clayton, W. R. & Mcclellan, G. H., 1980. Kinetics of dissolution of phosphate rocks in soils. Soil Sci. Soc. Am. J. 44. 260–264.
Chien, S. H., Sale, P. W. G. & Friesen, D. K., 1990. A discussion of the methods for comparing the relative effectiveness of phosphate fertilizers varying in solubility. Fert. Res. 24. 149–157.
Chien, S. H. et al., 1987a. Greenhouse evaluation of phosphorus availability from compacted phosphate rocks with urea or with urea and triple superphosphate. Fert. Res. 14. 245–256.
Chien, S. H. et al., 1987b. Effects of combinations of triple superphosphate and reactive phosphate rocks on yield and phosphorus uptake by corn. Soil Sci. Soc. Am. J. 51. 1656–1658
Clark, R. B. & Zeto, S. K., 2000. Mineral acquisition by Arbuscular Mycorrhizal plants. J. Plant Nutr. 23. 867–902.
Colwell, J. D. , 1963. The estimation of phosphorus fertilizer requirement in southern New South Wales by soil analysis. Aust. J. Exp. Agric. Anim. Husb. 3. 190–197.
Cooper, K. M. & Tinker, P. B., 1978. Translocation and transfer of nutrients in vesiculararbuscular mycorhizas. II. Uptake and translocation of phosphorus, zinc and sulphur. New Phytol. 81. 43–52.
Cornforth, I. S., Smith, G. S. & Fox, R. L., 1983. Phosphate extractability and availability to plants in phosphate rock-treated soils. New Zeland Journal of Experimental Agriculture. 11. 243–246.
Csathó P. & Magyar M., 1999. A reaktív algériai nyersfoszfát alkalmazásának agronómiai és környezeti vonatkozásai. In: XIII. Országos Környezetvédelmi Konferencia és Szakkiállítás. (Szerk.: ELEK GY. & VÉCSI B.) 121–131. MTESz. Siófok.
Csathó, P. & Németh, T., 1997. The direct and residual effect of different P-sources in Hungarian field trials. In: Proc. 11th World Fertilizer Congress. (Eds.: CLEEMPUT von, O. et al.) 101–108. Ghent, Belgium.
Dalal, R. C. , 1985. Comparative prediction of yield response and phosphorus uptake from soil using anion- and cation-anion-exchange resins. Soil Sci. 139. 227–231.
De Swart, P. H. & Van Diest, A., 1987. The rock-phosphate solubilizing capacity of Pueraria javanica as affected by soil pH, superphosphate priming effect and symbiontic N2 fixation. Plant and Soil. 100. 135–147.
Dinkelaker, B., Römheld, V. & Marschner, H., 1989. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell. Environ. 12. 285–292.
Dorner B. , 1925. A kereskedelmi trágyák történelme, gyártása és használata. Athenaeum. Budapest.
Egner, H., Riehm, H. & Domingo, W. R., 1960. Untersuchungen über die Chemische Bodenanalyse als Grundlage für die Beurteilung des Nahrstoffzustandes der Boden. II. Chemische Extraktionsmetoden zu Phosphor- und Kaliumbestimmung. K. Lantbr. Hogsk. Annlr. 26. 199–215.
Engelstad, O. P., Jugsujinda, A. & De Datta, S. K., 1974. Response by flooded rice to phosphate rocks varying in citrate solubility. Soil Sci. Soc. Amer. Proc. 38. 524–529.
Feng, G. & Xiong, L., 2002. Exploring plant factors for increasing phosphorus utilization from rock phosphates and native phosphates in acidic soils. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 211–233. IAEA–TEDOC-1272.
Fotyma, M., Gosek, S. & Boreczek, B., 2002. Evaluation of soil and fertilizer-derived phosphorus availability, particularly from rock phosphate, by biological and chemical methods. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 434–439. IAEA-TEDOC-1272.
Fotyma, M., Gosek, S. & Szewczyk, M., 1996. Preliminary experience with calcium chloride method in Poland. Commun. Soil Sci. Plant Anal. 27. 1387–1401.
Föhse, D., Claassen, N. & Jungk, A., 1991. Phosphorus efficiency of plants. II. Significance of root radius, root hairs and cation–anion balance for phosphorus influx in seven plant species. Plant and Soil. 132. 261–272.
Friesen, D. K., Sale, P. W. G. & Blair, G. J., 1987. Long-term greenhouse evaluation of partially acidulated phosphate rock fertilizers. II: Effect of cogranulation with elemental S on availability of P from two phosphate rocks. Fert. Res. 13. 45–54.
Füleky GY. , 1976a. A talaj könnyen oldható P-tartalmának meghatározására használt kivonószerek vizsgálata. I. Az AL-, DL-, CAL-, Bray I-, NaHCO3-os, NaHCO3+NH4F-os és CaCl2-os kivonószer vizsgálata közvetlen kioldással. Agrokémia és Talajtan. 25. 271–283.
Füleky GY. , 1976b. A talaj könnyen oldható P-tartalmának meghatározására használt kivonószerek vizsgálata. II. Az AL-, DL-, CAL-, Bray I-, NaHCO3-os, NaHCO3+NH4F-os és CaCl2-os kivonószerrel oldott P és a szervetlen foszfátfrakciók korrelációja. Agrokémia és Talajtan. 25. 284–295.
Füleky GY. , TOLNER L. & DÖMSÖDI J., 1980. A talaj foszforszolgáltatása kinetikájának mérése anioncserélo mugyantával. Agrokémia és Talajtan. 29. 273–279.
Gahoonia, T. S. & Nielsen, N. E., 1992. Control of pH at the soil–root interface. Plant and Soil. 140. 49–54.
Gardner, W. K., Parberry, D. G. & Barber, D. A., 1982. The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface. Plant and Soil. 68. 19–32.
Gianinazzi-Pearson, V. et al., 1981. Source of additional phosphorus absorbed from soil by vesicular-arbuscular mycorrhizal soybeans. Physiol. Vg. 16. 33–34.
Grinsted, M. J. et al., 1982. Plant induced changes in the rhizosphere of rape.I.pH change and the increase in P conentration in the soil solution. New Phytol. 91. 19–29.
Guissou, T. et al., 1999. Rock phosphate and vesicular-arbuscular mycorrhiza effects on growth and mineral nutrition of Zizyphus mauritiana Lam. in an alkaline soil. Ann. Sci. For. 55. 925–931.
Hagin, J. & Katz, S., 1985. Effectiveness of partially acidulated phosphate rock as a P source to plants in calcareous soils. Fert. Res. 8. 117–128.
Hammond, L. L., CHIEN , S. H. & Mokwunye, A. U., 1986. Agronomic value of unacidulated and partially acidulated phosphate rocks indigenous to the tropics. Adv. Agron. 40. 89–140.
Hammond, L. L., Menon, R. G. & Sissingh, H. A., 1985. Determination of plant available phosphorus by the Pi soil test. Agron. Absts. 173.
Haynes, R. J. , 1992. Relative ability of a range of crop species to use phosphate rock and monocalcium phosphate as P sources when grown in soils. J. Sci. Food Agric. 74. 1–7.
Hedley, M. J. & Bolan, N. S., 1997. Developments in some aspects of reactive phosphate rock research and use in New Zealand. Australian J. Experimental Agriculture. 37. 861–884.
Hedley, M. J., Nye, P. H. & White, R. E., 1982. Plant induced changes in the rhizosphere of rape. II. Origin of the pH change. New Phytol. 91. 31–44.
Hedley, M. J. et al., 1995. Phosphorus fertility management in agroecosystems. In: Phosphorus in the Global Environment. (Ed.: TISSEN, H.) 59–62. Scope, John Wiley & Sons, Ltd. New York.
Hinsinger, P. & Gilkes, R. J., 1995. Root-induced dissolution of phosphate rock in the rhizosphere of lupins grown in alkaline soil. Aust. J. Agric. Res. 33. 477–489.
Hinsinger, P. & Gilkes, R. J., 1996. Root-induced mobilisation of phosphate from phosphate rock and alumina-sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pH. Eur. J. Soil Sci. 47. 533–544.
Hinsinger, P. & Gilkes, R. J., 1997. Dissolution of phosphate rock in the rhizosphere of five plant species grown in an acid, P-fixing mineral substrate. Geoderma. 75. 231–239.
Hoffland, E. , 1992. Quantitative evaluation of the role of organic acid exudation in the mobilisation of rock phosphate by rape. Plant and Soil. 140. 279–289.
Hoffland, E., Findenegg, G. R. & Nelemans, J. A., 1989a. Solubilization of rock phosphate by rape I. Evaluation of the role of the nutrient uptake pattern. Plant and Soil. 113. 155–160.
Hoffland, E., Findenegg, G. R. & Nelemans, J. A., 1989b. Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as response to P-starvation. Plant and Soil. 113. 161–165.
Houba, V. J. G. et al., 1986. Comparison of soil extractions by 0.01 M CaCl2, by EUF and by some conventional extraction procedures. Plant and Soil. 96. 433–477.
Indiati, R. et al., 2001. Effect of time, fertilizer phosphorus sources and fertilization systems on phosphorus extractability of two soils from Hungary. Commun. Soil Sci. Plant Anal. 33. 545–560.
Isobe, K. & Tsuboki, Y., 1998. The relationship between growth promotion by arbuscular mycorrhizal fungi and root morphology and phosphorus absorption in gramineous and leguminous crops. Japan. J. Crop Sci. 67. 347–352.
Jakobsen, I., Abbott, L. K. & Robson, A. D., 1992. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Spread of hyphae and phosphorus inflow into roots. New Phytol. 120. 371–380.
Jayachandran, K., Schwab, A. P. & Hetrick, B. A. D., 1992. Mineralization of organic phosphorus by vesicular-arbuscular mycorrhizal fungi. Soil Biol. Biochem. 24. 897–903.
Jászberényi, I., Loch, J. & Sarkadi, J., 1994. Experiences of 0.01 M calcium-chloride extraction as soil testing procedure in Hungary. Commun. Soil Sci. Plant Anal. 25. 1771–1777.
Jones, J. B. , 1997. Soil test methods; past, present and future use of soil extractants. Commun. Soil Sci. Plant Anal. 29. 1543–1552.
Kanabo, I. A. K. & Gilkes, R. J., 1987. The influence of the addition of goethite to soil on the dissolution of North Carolina phosphate rock. Aust. J. Soil Res. 25. 313–322.
Kanabo, I. A. K. & Gilkes, R. J., 1988. The effects of moisture regime and incubation time on the dissolution of North Carolina phosphate rock in soil. Aust. J. Soil Res. 25. 153–164.
Kato, N., Zapata, F. & Axmann, H., 1995. Evaluation of the agronomic effectiveness of natural and partially acidulated phosphate rocks in several soils using 32P isotopic dilution techniques. Fert. Res. 41. 235–242.
Khasawneh, F. E. & Doll, E. C., 1978. The use of phosphate rock for direct application. Adv. Agron. 30. 159–206.
Kirk, G. J. D. , 1999. A model of phosphate solubilization by organic anion excretion by plant roots. Eur. J. Soil Sci. 50. 369–378.
Kirk, G. J. D. & Nye, P. H., 1986a. A simple model for predicting the rates of dissolution of sparingly soluble calcium phosphates in soil. I. The basic model. J. Soil Sci. 37. 529–540.
Kirk, G. J. D. & Nye, P. H., 1986b. A simple model for predicting the rates of dissolution of sparingly soluble calcium phosphates in soil. II. Applications of the model. J. Soil Sci. 37. 541–553.
Krámer M. , 1962. Adatok az északafrikai (Hyper) és izráeli (Cyklon) foszfátok mutrágyahatásáról. I. Az oldhatóság laboratóriumi vizsgálata. Agrokémia és Talajtan. 11. 345–354.
Krámer M. , 1963. Adatok az északafrikai (Hyper) és izráeli (Cyklon) foszfátok mutrágyahatásáról. II. Szemcsefinomság és fajlagos felület vizsgálata. Agrokémia és Talajtan. 12. 275–283
Krámer M. & Lamberger I., 1965. Hazai adatok a nyersfoszfátok érvényesülésérol. MTA Agrártud. Oszt. Közlem. 119–124.
Kreybig L. , 1949. Az istállótrágya foszforsavas erjesztése. Agrártudomány. 1. 609–617.
Kucey, R. & Bole, J., 1984. Availability of phosphorus from 17 rock phosphates in moderately and weakly acidic soils as determined by 32P dilution, E value, and total P uptake methods. Soil Sci. 138. 180–188.
Kumar, V., Gilkes, R. J. & Bolland, M. D. A., 1991. Residual phosphate fertilizer compounds in soils: Their influence on soil tests for available phosphate. Fertilizer Res. 30. 31–38.
Kumar, V., Gilkes, R. J. & Bolland, M. D.A., 1992. A comparison of seven soil P tests for plant species with different external P requirements grown on soils containing rock phosphate and superphosphate residues. Fert. Res. 33. 35–45.
Lehr, J. R. , 1980. Phosphate raw materials and fertilizers: Part I. A look ahead. In: The Role of Phosphorus in Agriculture (Eds.: KHASAWNEH, F. E., SAMPLE, E. C. & KAMPRATH, E. J.) 81–120. ASA-CSSA-SSSA. Madison, WI.
Lehr, J. R. & Mcclellan, G. H., 1972. A revised laboratory reactivity scale for evaluating phosphate rocks for direct application. Bull. Y43., Nat. Fert. Develop. Center. TVA.
Loganathan, P., Hedley, M. J. & Bretherton, M. R., 1994. The agronomic value of cogranulated Christmas island grade C phosphate rock and elemental sulphur. Fert. Res. 39. 22–237.
Louis, P. L. , 1993. Availability of fertilizer raw materials. The Fertility Society Proc. No. 336. Peterborough, England.
Mackay, A. D., Syers, J. K. & Gregg, P. E. H., 1984. Ability of chemical extraction procedures to assess the agronomic effectiveness of phosphate rock materials. New Zealand J. Agric. Res. 27. 219–230.
Mackay, A. D. & Wewala, G. S., 1990. Evaluation of partially acidulated phosphate fertilizers and reactive phosphate rocks for hill pastures. Fert. Res. 21. 149–156.
Mackay, A. D. et al., 1984. A comparison of 3 soil testing procedures for estimating the plant availability of phosphorus in soils receiving either superphosphate or phosphate rock. New Zealand J. Agric. Res. 27. 231–245.
Mackay, A. D. et al., 1986. A simple model to describe the dissolution of phosphate rock in soils. Soil Sci. Soc. Am. J. 50. 291–296.
Mahisarakul, J. et al., 2002. Field assessment of the relative agronomic effectiveness of phosphate rock materials in soybean–maize crop rotation using 32P isotope techniques. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 437–449. IAEA–TEDOC-1272.
Manjunath, A., Hue, N. V. & Habte, M., 1989. Response of Leucaena leucephala to vesicular-arbuscular mycorrhizal colonization and rock phosphate fertilization in an Oxisol. Plant and Soil. 114. 127–133.
Marschner, H. , 1997. The soil–root interface (rhizosphere) in relation to mineral nutrition. In: Mineral Nutrition of Higher Plants. (Ed.: MARSCHNER, H.) 537–596. Acad. Press. London.
Mártonffy T. & Pekáry K., 1978. Az egyedi és összetett mutrágyák, valamint a hyperfoszfát tápanyag-hatásának összehasonlítása az Egységes Országos Mutrágyázási Tartamkísérletek keretében. Növénytermelés. 27. 247–254.
Mcclellan, G. H. & Gremillion, L. R., 1980. Evaluation of phosphate raw materials. In: The Role of Phosphorus in Agriculture. (Eds.: KHASAWNEH, F. E., SAMPLE, E. C. & KAMPRATH, E. J.) 42–80. ASA–CSSA–SSSA. Madison, WI.
Mclaughlin, M. J. , 2002a. The Australian reactive phosphate rock project –aims, experimental approach and site characteristics. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 304–317. IAEA–TEDOC-1272.
Mclaughlin, M. J. , 2002b. Measuring P availability in soils fertilized with water-soluble Pfertilizers using 32P methodologies. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 331–341.. IAEA–TEDOC-1272.
Mendoza, R. E. & Pagani, E. A., 1997. Influence of phosphorus nutrition on mycorrhizal growth response and morphology of mycorrhizae in Lotus tenuis. J. Plant Nutr. 20. 625–639.
Menon, R. G. & Chien, S. H., 1990. Phosphorus availability to maize from partially acidulated phosphate rocks and phosphate rocks compacted with triple superphosphate. Plant and Soil. 127. 123–128.
Menon, R. G. & Chien, S. H., 1995. Soil testing for available phosphorus in soils where phosphate rock-based fertilisers are used. Fert. Res. 41. 179–187.
Menon, R. G., Chien, S. H. & Hammond, L. L., 1990. Development and evaluation of the Pi soil test for plant-available phosphorus. Commun. Soil Sci. Plant Anal. 21. 1131–1150.
Menon, R. G., Hammond, L. L. & Sissingh, H. A., 1988. Determination of plant available phosphorus by the iron hydroxide-impregnated filter paper soil test. Soil Sci. Soc. Am. J. 52. 110–115.
Mokwunye, A. U. & Chien, S. H., 1980. Reactions of partially acidulated phosphate rock with soils from the tropics. Soil Sci. Soc. Am. J. 44. 477–482.
Németh, T. & Osztoics, E., 1997. Effect of different phosphorus fertilizer sources on red clover in a pot experiment with six acidic soils. In.: Fertilization for Sustainable Plant Production and Soil Fertility. Proc. 11th Int. World Fertilizer Congress CIEC (Eds.: VAN CLEEMPUT, O. et al.) 419–427. Gent, Belgium.
Németh, T., Osztoics, E. & Baczó, GY., 1995. Effect of different P-sources on spring barley in a pot experiment with six acid soils. In: Soil Fertility and Fertilizer Management. Proc. 9th Int. Symp. CIEC (Eds.: WELTE, E. et al.) 99–106. Kusadasi, Turkey.
Németh, T. et al., 2001. Long-term field evaluation of phosphate rock and superphosphate use strategies in acid soils of Hungary: Two comparative field trials. Nutrient Cyclings in Agro- Ecosystems. 59. (In print)
Németh, T. et al., 2002. Long term field evaluation of phosphate rock and superphosphate in acid soils of Hungary: incubation and pot experiments. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 450–467. IAEA–TEDOC-1272.
Nye, P. H. , 1979. Diffusion of ions and uncharged solutes in soils and soil clays. Adv. Agron. 31. 225–272.
Olsen, S. R. et al., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dept. Agric. Circular No. 939. Washington, D. C.
Osztoics A.-NÉ & Varró T., 1986a. A talaj izotóposan kicserélheto foszfortartalmának meghatározása. Agrokémia és Talajtan. 35. 255–273.
Osztoics A.-NÉ & Varró T., 1986b. Foszfor izotópcsere kinetikája talajokon. Agrokémia és Talajtan. 35. 277–291.
Osztoics A.-NÉ , Csathó P. & Németh T., 1997. Az algériai nyersfoszfát és a szuperfoszfát hatásának vizsgálata. I. A foszfortrágyák összehasonlító vizsgálata a tavaszi árpa termésére és foszfortartalmára tenyészedény-kísérletben különbözo talajokon. Agrokémia és Talajtan. 46. 289–310.
Osztoics A.-NÉ , RADIMSZKY L. & NÉMETH T., 2000. Szuperfoszfát és nyersfoszfát hatása két hazai talaj víz- és AL-oldható P-tartalmára inkubációs kísérletben. Agrokémia és Talajtan. 49. 107–126.
Osztoics A.-NÉ et al., 2001. Az algériai nyersfoszfát és a szuperfoszfát hatásának vizsgálata. II. A foszfortrágyák hatása a vöröshere termésére és foszfortartalmára tenyészedény-kísérletben. Agrokémia és Talajtan. 50. 247–266.
Perrott, K. W., Saggar, S. & Menon, R. G., 1993. Evaluation of soil phosphate status where phosphate rock based fertilizers have been used. Fertilizer Res. 35. 67–82.
Péterfalvi A. , Debreceni B. & Bésán J-NÉ, 1988. Nyersfoszfáttartalmú szuperfoszfátok. Agrokémia és Talajtan. 36-37. 313–322.
Page, A. L. & Chang, A. C., 1978. Trace elements impact on plants during cropland disposal of sewage sludges. In: Effect of Heavy Metal Pollution on Plants. Vol. 1. Effect of Trace Metals on Plant Function. (Ed.: LEPP, N. W.) 77–109. Applied Sci. Publ. London–New Yersey.
Posta K. , 1997. Az endomikorrhiza szerepe a környezeti stresszhatások kivédésében. Agrokémia és Talajtan. 46. 359–370.
Rajan, S. S. S. , 1981. Use of low grade phosphate rocks as biosuper fertilizers. Fertilizer Res. 2. 199–210.
Rajan, S. S. S., Watkinson, J. H. & Sinclair, A. G., 1996. Phosphate rocks for direct application to soils. Adv. Agron. 57. 77–159.
Rajan, S. S. S. et al., 1991. Influence of pH, time and rate of application on phosphate rock dissolution and availability to pastures. II. Soil chemical studies. Fert. Res. 28. 95–101.
Rajan, S. S. S. et al., 1992. Extractable phosphorus to predict agronomic effectiveness of ground and unground phosphate rocks. Fert. Res. 32. 291–302.
Robinson, J. S. & Syers, J. K., 1990. A critical evaluation of the factors influencing the dissolution of gafsa phosphate rock. J. Soil Sci. 41. 597–605.
Römheld, V. , 1986. pH-Veränderungen in der Rhisosphäre verschiedener Kulturpflanzenarten in Abhängigkeit vom Nährstoffangebot. Potash Rev. 55. 1–8.
Ryan, M. H., Chilvers, G. A. & Dumaresq, D. C., 1994. Colonisation of wheat by VAmycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbour. Plant and Soil 160. 33–40.
Saggar, S., Hedley, M. J. & White, R. E., 1990. A simplified resin membrane technique for extracting phosphorus from soil. Fertilizer Res. 24. 173–180.
Saggar, S., Hedley, M. J. & White, R. E., 1992a. Development and evaluation of an improved soil test for phosphorus: 1. The influence of phosphorus fertilizer solubility and soil properties on the extractability of soil P. Fertilizer Res. 33. 81–91.
Saggar, S. et al., 1992b. Development and evaluation of an improved soil test for phosphorus: 2. Comparison of Olsen and mixed cation–anion exchange resin tests for predicting the yield of ryegrass grown in pots. Fertilizer Res. 33. 135–144.
Saif, S. R. , 1986. Vesicular-arbuscular mycorrhizae in tropical forage species as influenced by season, soil texture, fertilizers, host species and ecotypes. Angew. Botanik. 60. 125–139.
Sanders, F. E. & Tinker, P. B., 1971. Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature. 233. 278–279.
Sarkadi J. , 1960. Kísérletek különféle foszfátmutrágyákkal. Növénytermelés. 9. 159–167.
Sarkadi, J., Thamm, B. & Pusztai, A., 1984. Possibility of the application of AL-P-values corrected by some soil characteristics for the estimation of the P-availability in soils. In: CIEC 9th World Fertilizer Congress. Proc. Vol. 2. 319–323. Goeltze Druck. Göttingen.
Sidlauskas, G., Masauskas, S. & Ezerinskas, V., 2002. Liming effect on P availabilty from Maardu phosphate rock. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 440–450. IAEA–TEDOC-1272.
Sieverding, E. , 1991. Manipulation of indigenous VAM fungi through agronomic practices. In: Vesicular-Arbuscular Mycorrhiza Management in Tropical Agrosystems. (Ed.: SIEVERDING, E.) 117–185. Eschborn.
Sik, K. , 1964. Vergleichende Dauerversuche mit feingranulierten Rohphosphaten auf drei Bodentypen in Ungarn. Agrokémia és Talajtan. 13. Suppl. 139–146.
Sikora, F. J. & Giordano, P. M., 1995. Future directions for agricultural phosphorus research. Fertilizer Res. 41. 167–178.
Sinclair, A. G. et al., 1993. Agronomy modelling and economics of reactive phosphate rocks as slow-release phosphate fertilizers for grasslands. Fertilizer Res. 36. 229–238.
Sissingh, H. A. , 1971. Analytical technique of the Pw method, used for the assessment of the phosphate status of arable soils in the Netherlands. Plant and Soil. 34. 483–486.
Sisworo, E. L. et al., 2002. Direct use of phosphate rock to improve crop production in Indonesia. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 275–293. IAEA–TEDOC-1272.
Smani, M. S. , 1992. Elimination du cadmium de l’acide phosphorique. In: Proc. 4th Int. IMPHOS Conference: Phosphorus, Life and Environment. 483–498. Ghent, Belgium.
Smith, A. N., Posner, A. M. & Quirk, J. P., 1977. A model describing the kinetics of dissolution of hydroxyapatite. J. Colloid Interface Sci. 62. 475–494.
Smith, S. E. & Gianinazzi-Pearson, V., 1988. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu. Rev. Plant Physiol. Plant Biol. 39. 221–244.
Somasiri, L. L. W. & Edwards, A. C., 1992. An ion exchange resin method for nutrient extraction of agricultural advisory soil samples. Commun. Soil Sci. Plant Anal. 23. 645–657.
Tarafdar, J. C. & Marschner, H., 1994. Phosphatase activity in the rhizosphere and hyposphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil. Biol. Biochem. 26. 387–395.
Tatár L.-NÉ & Márton Á., 1982. Különbözõ foszfortrágyák hatása a talaj foszfortartalmára és a kukoricanövény foszforfrakcióira. III. Terméseredmények, foszforhatások. Agrokémia és Talajtan. 31. 29–36.
Thamm F-NÉ , 1980. Az AL-P értékek korrigálása néhány talajtulajdonság figyelembevételével. Agrokémia és Talajtan. 29. 473–496.
Thompson, J. P. , 1996. Correction of dual phosphorus and zinc deficiencies of linseed (Linum usitatissimum L.) with cultures of vesicular-arbuscular mycorrhizal fungi. Soil Biol. Biochem. 28. 941–951.
Tinker, P. B., Jones, M. D. & Durall, D. M., 1992. A functional comparison of ecto- and endomycorrhizas. In: Mycorrhizas in Ecosystems (Eds.: READ, D. J. et al.) 303–310. CAB International. Wallingford. UK.
Van Der Paauw, F. , 1971. An effective water extraction method for the determination of plantavailable soil phosphorus. Plant and Soil. 34. 467–481.
Van Erp, P. J., Houba, V. J. G. & Van Beusichem, M. L., 1998. One hundredth molar calcium chloride extraction procedure. Part I: A review of soil chemical, analytical, and plant nutritional aspects. Commun. Soil Sci. Plant Anal. 29. 1603–1623.
Vanlauwe, B. et al., 2000. Utilization of rock phosphate by crops on a representative toposequence in the Northern Guinea savanna zone of Nigeria: response by Mucuna pruriens, Lablab purpureus and maize. Soil Biol. Biochem. 32. 2063–2077.
Várallyay GY. et al., 1980. Magyarország termohelyi adottságait meghatározó talajtani tényezok 1: 100 000 méretarányú térképe. Agrokémia és Talajtan. 29. 35–76.
Várallyay, GY. et al., 1993. Map of the susceptibility of soils to acidification in Hungary. Agrokémia és Talajtan. 42. 35–42.
Végh, K. R. & Füleky, Gy., 1994. Phosphate transport to roots in soils with different moisture content and texture. In: Proc. ESA 3rd Congress (Eds.: BORIN, B. & SATTIN, M.) 550–551. Padova-Abano.
Végh, K. R., Füleky, G. & Varró, T., 1990. Phosphorus diffusion to barley roots as influenced by moisture and phosphorus content of soils. In: Plant Nutrition –Physiology and Applications. (Ed.: VAN BEUSICHEM, M. L.) 147–151. Kluwer. Wageningen.
Watkinson, J. H. , 1994a. A test for phosphate rock reactivity in which solubility and size are combined in a dissolution rate function. Fert. Res. 39. 205–215.
Watkinson, J. H. , 1994b. Modelling the dissolution rate of reactive phosphate rock in New Zealand pastoral soils. Aust. J. Soil Res. 32. 739–753.
Watkinson, J. H. , 1994c. Dissolution rate of phosphate rock particles having a wide range of sizes. Aust. J. Soil Res. 32. 1009–1014.
Wilson, M. A. & Ellis, B. G., 1984. Influence of calcium solution activity and surface area on the solubility of selected rock phosphates. Soil Sci. 138. 354–359.
Wright, R. J., Baligar, V. C. & Belesky, D. P., 1992. Dissolution of North Carolina phosphate rock in soils of the Appalachian region. Soil Sci. 153. 25–36.
Xiong, L. M., Zhou, Z. G. & Lu, R. K., 1996. Enhanced plant growth by uniform placement of superphosphate with rock phosphate in acidic soils. Commun. Soil Sci. Plant Anal. 27. 2837–2850.
Yang, X. et al., 1994. Effects of organic manure on solubility and mobility of different phosphate fertilizers in two paddy soils. Fert. Res. 38. 233–238.
Zaharah, A. R. & Bah, A. R., 1997. Effect of green manures on P solubilization and uptake from phosphate rocks. Nutrient Cycling in Agroecosystems. 48. 247–255.
Zaharah, A R & Sharifuddin, H. A. H., 2002. Phosphorus availability in acid tropical soil amended with phosphate rocks. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 294–303. IAEA-TEDOC-1272.
Zapata, F. & Axmann, H., 1995. 32P isotopic techniques for evaluating the agronomic effectiveness of rock phosphate materials. Fertilizer Res. 41. 189–195.
Zoysa, A. K. N., Loganathan, P. & Hedley, M. J., 1998. Phosphate rock dissolution and transformation in the rhizosphere of tea (Camellia sinensis L.) compared with other species. Eur. J. Soil Sci. 49. 477–486.
Zoysa, A. K. N., Loganathan, P. & Hedley, M. J., 1999. Phosphorus utilisation efficiency and depletion of phosphate fractions in the rhizosphere of three tea (Camellia sinensis L.) clones. Nutr. Cycl. Agroecosyst. 53. 189–201.