The forms and stocks of secondary carbonate accumulations and the distribution of secondary carbonate content were investigated in 20 soil profiles from Nagy-hegy, Tokaj. The secondary carbonate content varied to a great extent under different lithological conditions. The frequency of carbonate crusts coating the coarse fragments to a thickness of 1–7 mm was especially conspicuous. In selected profiles the amount of secondary carbonates was analysed separately for three carbonate pools: in the fine earth (<2 mm), in carbonate crusts and other concentrations, and in the skeletal part of the soils (dominantly dacite blocks and boulders). In one profile a calculation was made of the calcium carbonate stocks (in kg m−2) in the separate fractions of the fine earth, the skeletal fraction and the carbonate crusts and concentrations. The values obtained for the distinct soil horizons were then summed for the whole profile above the continuous hard rock.
The loess deposits can be regarded as the primary source of calcium carbonate, but many types of secondary carbonate accumulations occurred in places where the loess deposits were completely eroded or the original surface of the soil was only preserved on terraces with retaining walls. The results suggest that the highest accumulation of calcium carbonate occurs in profiles where loess, redeposited loess or colluvial deposit covers weathered volcanic rocks (pyroxene dacite), resulting in lithological discontinuity.
The carbonate crusts consisted of 55–96 % (m/m) CaCO3, and the coarse fraction (dacite boulders and blocks) also had a higher calcium carbonate content (5–10 % m/m) than the non-weathered pyroxene dacite. The calcium carbonate stocks in Calcic accumulation horizons proved to be 2.5 times higher than in the overlying soil horizons.
The accumulation forms of carbonates in the soil profiles and the lack of loess deposits on the top of the soil profiles suggest that the calcium carbonate was accumulated in the transitional zone between the loess and the weathered volcanic rocks. This appears to have taken place under humid climatic conditions, unlike the recent climate, and can thus be regarded at least partially as the result of paleoecological processes.
Ballenegger, R. , 1917. A tokaj-hegyaljai nyiroktalajokról. Földtani Közlemények 47 (136): 20–24.
Bittó B. , 1898a. A tokaj-hegyaljai szolotalajok calciumcarbonat tartalmáról I-II, Magyar Chemiai Folyóirat, 4 (8-9): 113–116; 129-137.
Bittó B. , 1898b. A tokaj-hegyaljai szolotalajok mésztartalmáról, Természettudományi Közlöny, 30 (344): 218.
Chaney, R.C., Slonim, S.M., Slonim, S.S., 1982. Determination of Calcium Carbonate Content in Soils, in: CHANEY, R.C., DEMARS, K.R., 1982. Geotechnical properties, behavior, and performance of calcareous soils. American Society for Testing and Materials, Philadelphia-Baltimore. 3–16.
FAO 2006: Guidelines for soil description, Fourth edition, Rome, FAO, 97.
Fehér, O., Füleky Gy., Madarász B., Kertész, Á., 2006. Hét vulkáni kozeten kialakult talajszelvény morfológiai és diagnosztikai jellemzoi a hazai genetikai talajosztályozás és a WRB (World Reference Base for Soil Resources, 1998) szerint. Agrokémia és Talajtan. 55 (2–347), 366–.
Fekete, J., Stefanovits, P., Bidló, G., 1997. Comperative study of the mineral composition of red clays in Hungary. Acta Agronom. Hungarica. 45 (4): 427–441.
Füleky, Gy. , Jakab, S., Fehér, O., Madarász, B., Kertész, Á., 2007. Hungary and the Carpathian Basin In: Arnalds, O., Bartoli, F., Buurman, P., Oskarsson, H., Stoops, G., García-Rodeja, E. (eds.) Soils of Volcanic Regions in Europe. Springer Verlag, Berlin Heidelberg, 29–42.
Füleky, Gy. , Kertész, Á., Madarász, B., Fehér, O., 2004. Soils developed in volcanic material in Hungary. In: Óskarsson, H., Arnalds, Ó. (eds) (2004): Volcanic Soil Resources in Europe. Agricultural Research Institute, Reykjavík, 63–64
Gyarmati, P. , 1977: A Tokaji-hegység intermedier vulkanizmusa. Magyar Állami Földtani Intézet Évkönyve, 58. Muszaki Kiadó, Budapest.
IUSS WORKING GROUP –FAO 2007: World Reference Base for Soil Resources -A Framework for International Classification, Correlation and Communication, IUSS Working Group WRB. World Soil Resources Reports No. 103. FAO, Rome (ISBN 92-5-105511-4), 128.
Kerényi, A. , 1994. Loess erosion on the Tokaj Big-Hill. Quaternary International 24, 47–52.
Madarász, B., Németh, T., Jakab, G., Szalai, Z., 2013. The erubáz volcanic soil of Hungary: Mineralogy and classification. Catena 107, 46–56.
Novák T. J. , Incze, J., Spohn, M., Glina, B., Giani, L., 2014. Soil and vegetation transformation in abandoned vineyards of the Tokaj Nagy-Hill. Catena 123: 88–89.
Pansu, M., Gautheyrou, J., 2006. Pipette Method after Robinson–Köhn or Andreasen. In: Pansu, M., Gautheyrou, J. 2006. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer Verlag Berlin Heidelberg pp. 35–42.
Pinczés, Z. , 1954. A tokaji Nagyhegy lösztakarója. Földrajzi Értesíto 3, 575–584.
Ponomareva, V. V., Plotnikova, T. A., 1980. Gumus i Pochvoobrazovanie (Humus and Pedogenesis), Nauka, Leningrad. 65–74.
Rózsa P. , Kozák M., 1982. A tokaji-nagyhegyi dácittípusok kozettani viszonyai. Acta Geographica Debrecina, 20, 191–215.
Simkó Gy. , 1926. Adatok a Tokaji-Nagyhegy és vidékének talajismeretéhez. Földtani Közlöny 56: 86–117.
Stefanovits, P. , 1959. Vörösagyagok elofordulása és tulajdonságaik Magyarországon.MTA Agrártudományi Osztályának Közleményei. 16: 225–238.
Sümegi, P. , 1995. Quartermalacological analysis of Late Pleistocene loess sediments of the Great Hungarian Plain. Malacological Newsletter 1, 79, 111.
Sümegi, P., Hertelendi, E., 1998. Reconstruction of microenvironmental changes in the Kopasz Hill loess area at Tokaj (Hungary) between 15 and 70 ka BP. Radiocarbon 40 (2), 855–863.
Szabó, J. , 1866: Tokaj-Hegyalja talajának leírása s osztályozása, Mathematikai és természettudományi közlemények, 4 (1): 366–372.
Xu, D., Cui, J., Bansal, R., Hao, X., Liu, J., Peterson, B. S., 2009. The Ellipsoidal Area Ratio (EAR): An Alternative Anisotropy Index for Diffusion Tensor Imaging. Magnetic Resonance Imaging. 27 (3):311–323.