This paper deals with the phase-shift fault analysis of cipher Trivium. So far, only bit-flipping technique has been presented in the literature. The best fault attack on Trivium [13] combines bit-flipping with algebraic cryptanalysis and needs to induce 2 one-bit faults and to generate 420 bits per each keystream. Our attack combines phase-shifting and algebraic cryptanalysis and needs to phase-shift 2 registers of the cipher and to generate 120 bits per each keystream.
Courtois, N., et al., ElimLin Algorithm Revisited, in: Fast Software Encryption, Springer Berlin Heidelberg, 2012, p. 306–325.
Courtois, N., et al., Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations, in: Advances in Cryptology–EUROCRYPT2000, Springer Berlin Heidelberg, 2000. p. 392–407.
Courtois, N., Bard, G. and Wagner, D., Algebraic and Slide Attacks on KeeLoq, in: Fast Software Encryption, Springer Berlin Heidelberg, 2008, p. 97–115.
De Canniere, C. , Trivium: A Stream Cipher Construction Inspired by Block Cipher Design Principles, in: Information Security, Springer Berlin Heidelberg, 2006, p. 171–186.
Eibach, T., Pilz, E. and Völkel, G. Attacking Bivium Using SAT Solvers, in: Theory and Applications of Satisfiability Testing–SAT 2008, Springer Berlin Heidelberg, 2008, p. 63–76.
Gomułkiewicz, Marcin, et al., Synchronization Fault Cryptanalysis for Breaking A5/1, in: Experimental and Efficient Algorithms, Springer Berlin Heidelberg, 2005, p. 415–427.
Hoch, J. and Shamir, A., Fault Analysis of Stream Ciphers, in: Cryptographic Hardware and Embedded Systems-CHES 2004, Springer Berlin Heidelberg, 2004, p. 240–253.
Hojsik, M. and Rudolf, B., Differential Fault Analysis of Trivium, in: Fast Software Encryption, Springer Berlin Heidelberg, 2008, p. 158–172.
Hojsik, M. and Rudolf, B., Floating Fault Analysis of Trivium, in: Progress in Cryptology-INDOCRYPT 2008, Springer Berlin Heidelberg, 2008, p. 239–250.
Loe, C. W. and Khoo, K., Side Channel Attacks on Irregularly Decimated Generators, in: Information Security and Cryptology — ICISC 2007, Springer Berlin Heidelberg, 2007, p. 116–130.
McDonald, C., et al., An Algebraic Analysis of Trivium Ciphers Based on the Boolean Satisfiability Problem, IACR Cryptology ePrint Archive, 2007, 2007:129.
Mohamed, S. E. M., et al., Using Sat Solving to Improve Differential Fault Analysis of Trivium, in: Information Security and Assurance, Springer Berlin Heidelberg, 2011, p. 62–71.
Simonetti, I., Faugere, J. and Perret, L., Algebraic Attack Against Trivium, in: First International Conference on Symbolic Computation and Cryptography, SCC, 2008, p. 95–102.
Zajac, P. , Solving Trivium-based Boolean Equations Using the Method of Syllogisms, Fundamenta Informaticae, 2012, p. 359–373.
Zajac, P. , A New Method to Solve MRHS Equation Systems and Its Connection to Group Factorization, Journal of Mathematical Cryptology, (2013), p. 367–381.