Authors:
Gábor DomokosBudapest University of Technology, Müegyetem rakpart 1-3., Budapest 1111, Hungary

Search for other papers by Gábor Domokos in
Current site
Google Scholar
PubMed
Close
and
Zsolt LángiBudapest University of Technology and Economics, Budapest, Egry József u. 1., 1111, Hungary

Search for other papers by Zsolt Lángi in
Current site
Google Scholar
PubMed
Close
Restricted access

In 1944, Santaló asked about the average number of normals through a point of a given convex body. Since then, numerous results appeared in the literature about this problem. The aim of this paper is to add to this list some new, recent developments. We point out connections of the problem to static equilibria of rigid bodies as well as to geometric partial differential equations of surface evolution.

  • [1]

    Heath, T. I. (ed.), The Works of Archimedes, Cambridge University Press, Cambridge, 1897.

  • [2]

    Blaschke, W. , Kreis und Kugel, Auflage, Berlin, 1956.

  • [3]

    Bloore, F. J. , The Shape of Pebbles, Math. Geology, 9 (1977), 113122.

  • [4]

    Bonnesen, T. and Fenchel, W., Theorie der konvexen Körper, Springer-Verlag, Berlin, 1934.

  • [5]

    Callahan, K. and Hann, K., An Euler-type volume identity, Bull. Austral. Math. Soc., 59 (1999), 495508.

  • [6]

    Chakerian, G. D. , Sets of constant width, Pacific J. Math., 19 (1966), 1321.

  • [7]

    Chakerian, G. D. , The number of diameters through a point inside an oval, Riv. Unión Argentina, 29 (1984), 282290.

  • [8]

    Chow, B. , On Harnack’s inequality and entropy for the Gaussian curvature flow, Comm. Pure Appl. Math., XLIV (1991), 469483.

  • [9]

    Damon, J. , Local Morse theory for solutions to the heat equation and Gaussian blurring, J. Differential Equations, 115 (1995), 368401.

    • Search Google Scholar
    • Export Citation
  • [10]

    Dawson, R. , Monostatic simplexes, Amer. Math. Monthly, 92 (1985), 54146.

  • [11]

    Dawson, R., Finbow, W. and Mak, P., Monostatic simplexes. II, Geom. Dedicata, 70 (1998), 209219.

  • [12]

    Dawson, R. and Finbow, W., What shape is a loaded die?, Math. Intelligencer, 22 (1999), 3237.

  • [13]

    Domokos, G. and Gibbons, G. W., The evolution of pebble shape in space and time, Proc. R. Soc. London A (2012), DOI:10.1098/rspa.2011.0562.

    • Search Google Scholar
    • Export Citation
  • [14]

    Domokos, G. and Lángi, Z., The robustness of equilibria on convex solids, Mathematika, 40 (2014), 237256.

  • [15]

    Domokos, G., Lángi, Z. and Szabó, T., On the equilibria of finely discretized curves and surfaces, Monatsh. Math., 168 (2012), 321345.

    • Search Google Scholar
    • Export Citation
  • [16]

    Domokos, G., Sipos, A. Á. and Várkonyi, P. L., Continuous and discrete models for abrasion processes, Per. Pol. Architecture, 40 (2009), 38., doi:10.3311/pp.ar.2009-1.01.

    • Search Google Scholar
    • Export Citation
  • [17]

    Domokos, G., Sipos, A. Á., Szabó, T. and Várkonyi, P. L., Pebbles, shapes and equilibria, Math. Geosci., 42 (2010), 2947.

  • [18]

    Domokos, G. and Várkonyi, P. L., Geometry and self-righting of turtles, Proc. R. Soc. London B., 275(1630) (2008), 1117.

  • [19]

    Dumitraşcu, S. , Every convex polygon is swept by its inner normal more than 4 times (English summary), An. Univ. Timişoara Ser. Mat.-Inform., 36 (1998), 4358.

    • Search Google Scholar
    • Export Citation
  • [20]

    Firey, W. J. , The shape of worn stones, Mathematika, 21(1974) 111.

  • [21]

    Federer, H. , Geometric Measure Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1969.

  • [22]

    Gage, M. , An isoperimetric inequality with applications to curve shortening, Duke Math. J., 50 (1983), 12251229.

  • [23]

    Ghomi, M. , The problem of optimal smoothing for convex functions, Proc. Amer. Math. Soc., 130 (2002), 22552259.

  • [24]

    Grayson, M. A. , The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285314.

  • [25]

    Hammer, P. C. , Convex bodies associated with a convex body, Proc. Amer. Math. Soc., 2 (1951), 781793.

  • [26]

    Hann, K. , The average number of normals through a point in a convex body and a related Euler-type identity, Geom. Dedicata, 48 (1993), 2755.

    • Search Google Scholar
    • Export Citation
  • [27]

    Hann, K. , What’s the bound on the average number of normals?, Amer. Math.Monthly, 103 (1996), 897900.

  • [28]

    Hann, K. , Normals in a Minkowski plane, Geom. Dedicata, 64 (1997), 355364.

  • [29]

    Hann, K. , Minkowski normals for polycircles, Geom. Dedicata, 75 (1999), 5765.

  • [30]

    Heppes, A. , A double-tipping tetrahedron, SIAM Rev., 9 (1967), 599600.

  • [31]

    Huisken, G. , Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom., 31 (1990), 285299.

  • [32]

    Hug, D. , On the mean number of normals through a point in the interior of a convex body, Geom. Dedicata, 55 (1995), 319340.

  • [33]

    Kawohl, B. and Weber, C., Meissner’s Mysterious Bodies, Math. Intelligencer, 33(3) (2011), 94101.

  • [34]

    Krapivsky, P. L. and Redner, S., Smoothing a rock by chipping, Phys. Rev. E, 9 (2007), 75(3 Pt 1):031119.

  • [35]

    Krynine, P. D. , On the Antiquity of “Sedimentation” and Hydrology, GSA Bulletin, 71 (1960), 17211726.

  • [36]

    Martini, H. and Swanepoel, K. J., The geometry of Minkowski spaces – a survey. Part II, Expo. Math., 22 (2004), 93144.

  • [37]

    McMullen, P. , On zonotopes, Trans. Amer. Math. Soc., 159 (1971), 91109.

  • [38]

    Poston, T. and Stewart, I., Catastrophe Theory and Its Applications, Dover Publications, Inc., Mineola, New York, 1996.

  • [39]

    Lord Rayleigh, Pebbles, natural and artificial. Their shape under various conditions of abrasion, Proc. R. Soc. London A, 181 (1942), 107118.

    • Search Google Scholar
    • Export Citation
  • [40]

    Rogers, C. A. and Shephard, G. C., The difference body of a convex body, Arch. Math., 8 (1957), 220233.

  • [41]

    Santaló, L. A. , Note on convex spherical curves, Bull. Amer. Math. Soc., 50 (1944), 528534.

  • [42]

    Spivak, M. , A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc., Houston, Texas, 1999.

  • Collapse
  • Expand

The LaTeX template package can be downloaded from HERE.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2021  
Web of Science  
Total Cites
WoS
589
Journal Impact Factor 0,739
Rank by Impact Factor Mathematics 229/332
Impact Factor
without
Journal Self Cites
0,710
5 Year
Impact Factor
0,654
Journal Citation Indicator 0,57
Rank by Journal Citation Indicator Mathematics 287/474
Scimago  
Scimago
H-index
26
Scimago
Journal Rank
0,265
Scimago Quartile Score Mathematics (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
1,3
Scopus
CIte Score Rank
General Mathematics 193/391 (Q2)
Scopus
SNIP
0,746

2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 708 EUR / 860 USD
Print + online subscription: 796 EUR / 970 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)