The choice of stress resistant and highly adaptable species is a fundamental step for landscaping and ornamental purposes in arid and coastal environments such as those in the Mediterranean basin. The genus Tamarix L. includes about 90 species with a high endurance of adversity. We investigated the water relations and photosynthetic response of Tamarix arborea (Sieb. ex Ehrenb.) Bge. var. arborea and T. parviflora DC. growing in an urban environment. Both species showed no evidence of drought or salt stress in summer, and appeared to follow two strategies with T. arborea var. arborea investing in high carbon gain at the beginning of the summer, and then reducing photosynthetic activity at the end of the season, and T. parviflora showing lower but constant levels of photosynthetic activity throughout the vegetative season. For landscaping and ornamental purposes, we suggest T. arborea var. arborea when a fast-growing, high-cover species is necessary, and T. parviflora when less-invasive species are required.
Abou Jaoudé, R. , de Dato, G., De Angelis, P. (2012) Photosynthetic and wood anatomical responses of Tamarix africana Poiret to water level reduction after short-term fresh- and saline-water flooding. Ecol. Res. 27, 857–866.
Alaimo, M. G., Gargano, M. L., Vizzì, D., Venturella, G. (2012) Leaf anatomy in Tamarix arborea var. arborea (Tamaricaceae). Pl. Biosyst. 147, 21–24.
Anderson, J. E. (1982) Factors controlling transpiration and photosynthesis in Tamarix chinensis. Lour. Ecology 63, 48–56.
Carter, J. L., Veneklaas, E. J., Colmer, T. D., Eastham, J., Hatton, T. J. (2006) Contrasting water relations of three coastal tree species with different exposure to salinity. Physiol. Plantarum 127, 360–373.
Cleverly, J. R., Smith, S. D., Sala, A., Devitt, D. A. (1997) Invasive capacity of Tamarix ramosissima in a Mojave Desert floodplain: the role of drought. Oecologia 111, 12–18.
De Baets, S., Poesen, J., Reubens, B., Wemans, K., De Baerdemaeker, J., Muys, B. (2008) Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 305, 207–226.
Gargano, M. L., Mandracchia, G., Venturella, G. (2009) Contributo alla conoscenza del genere Tamarix L. nell'Isola del Giglio (Arcipelago Toscano). Inform. Bot. Ital. 4, 125–128.
Gries, D., Zeng, F., Foetzki, A., Arndt, S. K., Bruelheide, H., Thomas, F. M., Zhang, X., Runge, M. (2003) Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant Cell Environ. 26, 725–736.
Inskeep, W. P., Bloom, P. R. (1985) Extinction coefficients of chlorophyll a and b in N,Ndimethylformamide and 80% acetone. Plant Physiol. 77, 483–485.
Kadukova, J., Manousaki, E., Kalogerakis, N. (2008) Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge). Int. J. Phytoremediat. 10, 31–46.
Kuzminsky, E., De Angelis, P., Abou Jaoudé, R., Abbruzzese, G., Terzoli, S., Angelaccio, C., De Dato, G., Monteverdi, M. C., Valentini, R. (2014) Biodiversity of Italian Tamarix spp. populations: their potential as environmental and productive resources. Rend. Fis. Acc. Lincei 25, 439–452.
Li, J., Yu, B., Zhao, C., Nowak, R. S., Zhao, Z., Sheng, Y., Li, J. (2012) Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability. Tree Physiol. 33, 57–68.
Ma, Q., Wang, J., Li, X., Zhu, S., Liu, H., Zhan, K. (2009) Long-term changes of Tamarix-vegetation in the oasis-desert ecotone and its driving factors: implication for dryland management. Environ.Earth Sci. 59, 765–774.
Moreno-Jiménez, E., Vázquez, S., Carpena-Ruiz, R. O., Esteban, E., Peñalosa, J. M. (2011) Using Mediterranean shrubs for the phytoremediation of a soil impacted by pyritic wastes in Southern Spain: A field experiment. J. Environ. Manage. 92, 1584–1590.
Mounsif, M., Wan, C., Sosebee, R. E. (2002) Effects of top-soil drying on saltcedar photosynthesis and stomatal conductance. J. Range Manage. 55, 88–93.
Murchie, E. H., Niyogi, K. K. (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol. 155, 86–92.
Nippert, J. B., Butler, J. J., Kluitenberg, G. J., Whittemore, D. O., Arnold, D., Spal, S. E., Ward, J. K. (2010) Patterns of Tamarix water use during a record drought. Oecologia 162, 283–292.
Parida, A., Das, A. (2005) Salt tolerance and salinity effects on plants: a review. Ecotox. Environ. Safe. 60, 324–349.
Pavlovic, P., Mitrovic, M., Djurdjevic, L. (2004) An ecophysiological study of plants growing on the fly ash deposits from the “Nikola Tesla-A” thermal power station in Serbia. Environ. Manage. 33, 654–663.
Pinheiro, C., Chaves, M. M. (2011) Photosynthesis and drought: can we make metabolic connections from available data? J. Exp. Bot. 62, 869–882.
Tyree, M. T., Hammel, H. T. (1972) The measurement of the turgor pressure and water relations of plants by the pressure-bomb technique. J. Exp. Bot. 23, 267–282.
Venturella, G., Baum, B., Mandracchia, G. (2007) The genus Tamarix (Tamaricaceae) in Sicily: first contribution. Fl. Medit. 17, 25–46.
Venturella, G., Mandracchia, G., Gargano, M. L. (2008) The tamarisks of southern Calabria (Italy). Fl. Medit. 18, 421–430.
Venturella, G., Gargano, M. L., Mandracchia, G. (2012) First record of Tamarix meyeri (Tamaricaceae) for western Europe. Pl. Biosyst. 146, 480–485.
Xu, H., Li, Y. (2006) Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events. Plant Soil 285, 5–17.