Authors:
Márta Kotormán Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary

Search for other papers by Márta Kotormán in
Current site
Google Scholar
PubMed
Close
,
Alexandra Varga Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary

Search for other papers by Alexandra Varga in
Current site
Google Scholar
PubMed
Close
,
Phanindra Babu Kasi Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary

Search for other papers by Phanindra Babu Kasi in
Current site
Google Scholar
PubMed
Close
, and
János Nemcsók Department of Biology, Pedagogical Faculty, Selye János University, Bratislavská cesta 3322, SK-94501 Komarno, Slovak Republic

Search for other papers by János Nemcsók in
Current site
Google Scholar
PubMed
Close
Restricted access

During the study of inhibition of amyloid fibril formation, α-chymotrypsin protein was developed in 55% ethanol at pH 7.0. We investigated the inhibitory effect of different spices on amyloid fibril formation using turbidity measurements and Congo red binding assays. We found that all spices except the black pepper and caraway seed prevented fibril formation. The highest inhibition was measured with the clove, which reduced the amount of aggregates by 90%. We studied the inhibitory effect of the cloves at different concentrations on aggregation, it was found that the inhibitory activity of clove is dependent on concentration. We have measured the total phenolic content of the spice extracts too. Based on all these findings we have come to the following conclusion: Our results indicate that spices can contain other compounds too – not only phenolic compounds – which influence the formation of amyloid fibrils, and the effectiveness of various phenolic compounds are different.

  • 1.

    Adefegha, S. A., Oboh, G. (2012) In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe2+-induced lipid peroxidation in rat pancreas. Asian Pac. J. Trop. Biomed. 2, 774781.

    • Search Google Scholar
    • Export Citation
  • 2.

    Cheng, B., Gong, H., Xiao, H., Petersen, R. B., Zheng, L., Huang, K. (2013) Inhibiting toxic aggregation of amyloidogenic proteins: A therapeutic strategy for protein misfolding diseases. Biochim. Biophys. Acta-Gen. Subj. 1830, 48604871.

    • Search Google Scholar
    • Export Citation
  • 3.

    Cheng, B., Liu, X., Gong, H., Huang, L., Chen, H., Zhang, X., Li, C., Yang, M., Ma, B., Jiao, L., Zheng, L., Huang, K. (2011) Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus. J. Agric. Food Chem. 59, 1314713155.

    • Search Google Scholar
    • Export Citation
  • 4.

    Chiti, F., Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333366.

  • 5.

    Daval, M., Bedrood, S., Gurlo, T., Huang, C. J., Costes, S., Butler, P. C., Langen, R. (2010) The effect of curcumin on human islet amyloid polypeptide misfolding and toxicity. Amyloid 17, 118128.

    • Search Google Scholar
    • Export Citation
  • 6.

    Dec, R., Babenko, V., Dzwolak, W. (2016) Molecules of Congo red caught hopping between insulin fibrils: a chiroptical probe of the dye-amyloid binding dynamics. RSC Advances 6, 9733197337.

    • Search Google Scholar
    • Export Citation
  • 7.

    Dubey, K., Anand, B. G., Shekhawat, D. S., Kar, K. (2017) Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis. Sci. Rep. 7, 40744.

    • Search Google Scholar
    • Export Citation
  • 8.

    Essa, M. M., Vijayan, R. K., Castellano-Gonzalez, G., Memon, M. A., Braidy, N., Guillemin, G. J. (2012) Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem. Res. 37, 18291842.

    • Search Google Scholar
    • Export Citation
  • 9.

    Härd, T., Lendel, C. (2012) Inhibition of amyloid formation, J. Mol. Biol. 421, 441465.

  • 10.

    Hazavehei, S. M. (2012) Effect of two herbal polyphenol compounds on human amylin amyloid formation and destabilization. J. Med. Plants Res. 6, 32073212.

    • Search Google Scholar
    • Export Citation
  • 11.

    Hossain, M. B., Patras, A., Barry-Ryan, C., Martin-Diana, A. B., Brunton, N. P. (2011) Application of principal component and hierarchical cluster analysis to classify different spices based on in vitro antioxidant activity and individual polyphenolic antioxidant compounds. J. Funct. Foods 3, 179189.

    • Search Google Scholar
    • Export Citation
  • 12.

    Iriti, M., Vitalini, S., Fico, G., Faoro, F. (2010) Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 15, 35173555.

    • Search Google Scholar
    • Export Citation
  • 13.

    Iuvone, T., De Filippis, D., Esposito, G., D’Amico, A. (2006) The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J. Pharmacol. Exp. Ther. 317, 11431149.

    • Search Google Scholar
    • Export Citation
  • 14.

    Justesen, U., Knuthsen, P. (2001) Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem. 73, 245250.

    • Search Google Scholar
    • Export Citation
  • 15.

    Kim, I. S., Yang, M. R., Lee, O. H., Kang, S. N. (2011) Antioxidant activities of hot water extracts from various spices. Int. J. Mol. Sci. 12, 41204131.

    • Search Google Scholar
    • Export Citation
  • 16.

    Klunk, W. E., Jacob, R. F., Mason, R. P. (1999) Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo red-Abeta (CR-abeta) spectrophotometric assay. Anal. Biochem. 266, 6676.

    • Search Google Scholar
    • Export Citation
  • 17.

    Knowles, T. P., Vendruscolo, M., Dobson, C. M. (2014) The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 38496.

    • Search Google Scholar
    • Export Citation
  • 18.

    Lan, X., Wang, W., Li, Q., Wang, J. (2016) The natural flavonoid pinocembrin: Molecular targets and potential therapeutic applications. Mol. Neurobiol. 53, 17941801.

    • Search Google Scholar
    • Export Citation
  • 19.

    Liang, Z. H., Cheng, X. H., Ruan, Z. G., Wang, H., Li, S. S., Liu, J., Li, G. Y., Tian, S. M. (2015) Protective effects of components of the Chinese herb grassleaf sweetflag rhizome on PC12 cells incubated with amyloid-beta42. Neural Regen. Res. 10, 12921297.

    • Search Google Scholar
    • Export Citation
  • 20.

    Liu, R., Wu, C., Zhou, D., Yang, F., Tian, S., Zhang, L., Zhang, T., Du, G. (2012) Pinocembrin protects against ß-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondrionmediated apoptosis. BMC Med. 10, 105.

    • Search Google Scholar
    • Export Citation
  • 21.

    Mirmosayyeb, O., Tanhaei, A., Sohrabi, H. R., Martins, R. N., Tanhaei, M., Najafi, M. A., Safaei, A., Meamar R. (2017) Possible role of common spices as a preventive and therapeutic agent for Alzheimer’s disease. Int. J. Prev. Med. 8, 5.

    • Search Google Scholar
    • Export Citation
  • 22.

    Misharina, T. A. (2016) Antiradical properties of essential oils and extracts from coriander, cardamom, white, red, and black peppers. Appl. Biochem. Microbiol. 52, 7986.

    • Search Google Scholar
    • Export Citation
  • 23.

    Na, J. Y., Song, K., Lee, J. W., Kim, S., Kwon, J. (2016) 6-Shogaol has anti-amyloidogenic activity and ameliorates Alzheimer’s disease via CysLT1R-mediated inhibition of cathepsin B. Biochem. Biophys. Res. Commun. 477, 96102.

    • Search Google Scholar
    • Export Citation
  • 24.

    Ngoungoure, V. L. N., Schluesener, J., Moundipa, P. F. S., Chluesener, H. (2015) Natural polyphenols binding to amyloid: A broad class of compounds to treat different human amyloid diseases. Mol. Nutr. Food Res. 59, 820.

    • Search Google Scholar
    • Export Citation
  • 25.

    Ono, K., Li, L., Takamura, Y., Yoshiike, Y., Zhu, L., Han, F., Mao, X., Ikeda, T., Takasaki, J., Nishijo, H., Takashima, A., Teplow, D. B., Zagorski, M. G., Yamada, M. (2012) Phenolic compounds prevent amyloid ß-protein oligomerization and synaptic dysfunction by site-specific binding. J. Biol. Chem. 287, 1463114643.

    • Search Google Scholar
    • Export Citation
  • 26.

    Pandey, N., Strider, J., Nolan, W. C., Yan, S. X., Galvin, J. E. (2008) Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathol. 115, 479489.

    • Search Google Scholar
    • Export Citation
  • 27.

    Porat, Y., Abramowitz, A., Gazit, E. (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67, 2737.

    • Search Google Scholar
    • Export Citation
  • 28.

    Porzoor, A., Alford, B., Hügel, H., Grando, D., Caine, J., Macreadie, I. (2015) Anti-amyloidogenic properties of some phenolic compounds. Biomolecules 5, 505527.

    • Search Google Scholar
    • Export Citation
  • 29.

    Simon, L. M., Laczkó, I., Demcsák, A., Tóth, D., Kotormán, M., Fülöp, L. (2012) The formation of amyloid-like fibrils of a-chymotrypsin in different aqueous organic solvents. Protein Pept. Lett. 19, 544550.

    • Search Google Scholar
    • Export Citation
  • 30.

    Solanki, I., Parihar, P., Mansuri, M. L., Parihar, M. S. (2015) Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv. Nutr. 6, 6472.

    • Search Google Scholar
    • Export Citation
  • 31.

    Stefani, M. (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim. Biophys. Acta 1739, 525.

    • Search Google Scholar
    • Export Citation
  • 32.

    Suantawee, T., Wesarachanon, K., Anantsuphasak, K., Daenphetploy, T., Thien-Ngern, S., Thilavech, T., Pasukamonset, P., Ngamukote, S., Adisakwattana, S. (2015) Protein glycation inhibitory activity and antioxidant capacity of clove extract. J. Food Sci. Technol. 52, 38433850.

    • Search Google Scholar
    • Export Citation
  • 33.

    Torres, J. E. D., Gassara, F., Kouassi, A. P., Brar, S. K., Belkacemi, K. (2017) Spice use in food: Properties and benefits. Crit. Rev. Food Sci. Nutr. 57, 10781088.

    • Search Google Scholar
    • Export Citation
  • 34.

    Touba, E. P., Zakaria, M., Tahereh, E. (2012) Anti-fungal activity of cold and hot water extracts of spices against fungal pathogens of Roselle (Hibiscus sabdariffa) in vitro. Microb. Pathog. 52, 125129.

    • Search Google Scholar
    • Export Citation
  • 35.

    de Vasconcelos, D. N., Ximenes, V. F. (2015) Albumin-induced circular dichroism in Congo red: Applications for studies of amyloid-like fibril aggregates and binding sites. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 150, 321330.

    • Search Google Scholar
    • Export Citation
  • 36.

    Wang, S. S., Liu, K. N., Lee, W. H. (2009) Effect of curcumin on the amyloid fibrillogenesis of hen egg-white lysozyme. Biophys. Chem. 144, 7887.

    • Search Google Scholar
    • Export Citation
  • 37.

    Waterhouse, A. L. (2002) Determination of Total Phenolics. In Current Protocols in Food Analytical Chemistry John Wiley & Sons, Inc., Hoboken, NJ, USA. (doi:10.1002/0471142913.faa0101s06)

    • Search Google Scholar
    • Export Citation
  • 38.

    Wu, C., Scott, J., Shea, J. E. (2012) Binding of congo red to amyloid protofibrils of the Alzheimer Aß(9–40) peptide probed by molecular dynamics simulations. Biophys. J. 103, 550557.

    • Search Google Scholar
    • Export Citation
  • 39.

    Zhang, C., Browne, A., Child, D., Tanzi, R. E. (2010) Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. J. Biol. Chem. 285, 2847228480.

    • Search Google Scholar
    • Export Citation
  • 40.

    Zhao, R., So, M., Maat, H., Ray, N. J., Arisaka, F., Goto, Y., Carver, J. A., Hall, D. (2016) Measurement of amyloid formation by turbidity assay–seeing through the cloud. Biophys. Rev. 8, 445471.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editorial Board

    1. Csányi, Vilmos (Göd)
    1. Dudits, Dénes (Szeged)
    1. Falus, András (Budapest)
    1. Fischer, Ernő (Pécs)
    1. Gábriel, Róbert (Pécs)
    1. Gulya, Károly (Szeged)
    1. Gulyás, Balázs (Stockholm)
    1. Hajós, Ferenc (Budapest)
    1. Hámori, József (Budapest)
    1. Heszky, László (Gödöllő)
    1. Hideg, Éva (Szeged)
    1. E. Ito (Sanuki)
    1. Janda, Tibor (Martonvásár)
    1. Kavanaugh, Michael P. (Missoula)
    1. Kása, Péter (Szeged)
    1. Klein, Éva (Stockholm)
    1. Kovács, János (Budapest)
    1. Brigitte Mauch-Mani (Neuchâtel)
    1. Nässel, Dick R. (Stockholm)
    1. Nemcsók, János (Szeged)
    1. Péczely, Péter (Gödöllő)
    1. Roberts, D. F. (Newcastle-upon-Tyne)
    1. Sakharov, Dimitri A. (Moscow)
    1. Singh, Meharvan (Fort Worth)
    1. Sipiczky, Mátyás (Debrecen)
    1. Szeberényi, József (Pécs)
    1. Székely, György (Debrecen)
    1. Tari, Irma (Szeged)
    1. Vágvölgyi, Csaba (Szeged),
    1. L. Zaborszky (Newark)

 

Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006
E-mail: elekes@tres.blki.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Acta Biologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)