During the study of inhibition of amyloid fibril formation, α-chymotrypsin protein was developed in 55% ethanol at pH 7.0. We investigated the inhibitory effect of different spices on amyloid fibril formation using turbidity measurements and Congo red binding assays. We found that all spices except the black pepper and caraway seed prevented fibril formation. The highest inhibition was measured with the clove, which reduced the amount of aggregates by 90%. We studied the inhibitory effect of the cloves at different concentrations on aggregation, it was found that the inhibitory activity of clove is dependent on concentration. We have measured the total phenolic content of the spice extracts too. Based on all these findings we have come to the following conclusion: Our results indicate that spices can contain other compounds too – not only phenolic compounds – which influence the formation of amyloid fibrils, and the effectiveness of various phenolic compounds are different.
Adefegha, S. A., Oboh, G. (2012) In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe2+-induced lipid peroxidation in rat pancreas. Asian Pac. J. Trop. Biomed. 2, 774–781.
Cheng, B., Gong, H., Xiao, H., Petersen, R. B., Zheng, L., Huang, K. (2013) Inhibiting toxic aggregation of amyloidogenic proteins: A therapeutic strategy for protein misfolding diseases. Biochim. Biophys. Acta-Gen. Subj. 1830, 4860–4871.
Cheng, B., Liu, X., Gong, H., Huang, L., Chen, H., Zhang, X., Li, C., Yang, M., Ma, B., Jiao, L., Zheng, L., Huang, K. (2011) Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus. J. Agric. Food Chem. 59, 13147–13155.
Chiti, F., Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366.
Daval, M., Bedrood, S., Gurlo, T., Huang, C. J., Costes, S., Butler, P. C., Langen, R. (2010) The effect of curcumin on human islet amyloid polypeptide misfolding and toxicity. Amyloid 17, 118–128.
Dec, R., Babenko, V., Dzwolak, W. (2016) Molecules of Congo red caught hopping between insulin fibrils: a chiroptical probe of the dye-amyloid binding dynamics. RSC Advances 6, 97331–97337.
Dubey, K., Anand, B. G., Shekhawat, D. S., Kar, K. (2017) Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis. Sci. Rep. 7, 40744.
Essa, M. M., Vijayan, R. K., Castellano-Gonzalez, G., Memon, M. A., Braidy, N., Guillemin, G. J. (2012) Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem. Res. 37, 1829–1842.
Härd, T., Lendel, C. (2012) Inhibition of amyloid formation, J. Mol. Biol. 421, 441–465.
Hazavehei, S. M. (2012) Effect of two herbal polyphenol compounds on human amylin amyloid formation and destabilization. J. Med. Plants Res. 6, 3207–3212.
Hossain, M. B., Patras, A., Barry-Ryan, C., Martin-Diana, A. B., Brunton, N. P. (2011) Application of principal component and hierarchical cluster analysis to classify different spices based on in vitro antioxidant activity and individual polyphenolic antioxidant compounds. J. Funct. Foods 3, 179–189.
Iriti, M., Vitalini, S., Fico, G., Faoro, F. (2010) Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 15, 3517–3555.
Iuvone, T., De Filippis, D., Esposito, G., D’Amico, A. (2006) The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J. Pharmacol. Exp. Ther. 317, 1143–1149.
Justesen, U., Knuthsen, P. (2001) Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem. 73, 245–250.
Kim, I. S., Yang, M. R., Lee, O. H., Kang, S. N. (2011) Antioxidant activities of hot water extracts from various spices. Int. J. Mol. Sci. 12, 4120–4131.
Klunk, W. E., Jacob, R. F., Mason, R. P. (1999) Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo red-Abeta (CR-abeta) spectrophotometric assay. Anal. Biochem. 266, 66–76.
Knowles, T. P., Vendruscolo, M., Dobson, C. M. (2014) The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–96.
Lan, X., Wang, W., Li, Q., Wang, J. (2016) The natural flavonoid pinocembrin: Molecular targets and potential therapeutic applications. Mol. Neurobiol. 53, 1794–1801.
Liang, Z. H., Cheng, X. H., Ruan, Z. G., Wang, H., Li, S. S., Liu, J., Li, G. Y., Tian, S. M. (2015) Protective effects of components of the Chinese herb grassleaf sweetflag rhizome on PC12 cells incubated with amyloid-beta42. Neural Regen. Res. 10, 1292–1297.
Liu, R., Wu, C., Zhou, D., Yang, F., Tian, S., Zhang, L., Zhang, T., Du, G. (2012) Pinocembrin protects against ß-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondrionmediated apoptosis. BMC Med. 10, 105.
Mirmosayyeb, O., Tanhaei, A., Sohrabi, H. R., Martins, R. N., Tanhaei, M., Najafi, M. A., Safaei, A., Meamar R. (2017) Possible role of common spices as a preventive and therapeutic agent for Alzheimer’s disease. Int. J. Prev. Med. 8, 5.
Misharina, T. A. (2016) Antiradical properties of essential oils and extracts from coriander, cardamom, white, red, and black peppers. Appl. Biochem. Microbiol. 52, 79–86.
Na, J. Y., Song, K., Lee, J. W., Kim, S., Kwon, J. (2016) 6-Shogaol has anti-amyloidogenic activity and ameliorates Alzheimer’s disease via CysLT1R-mediated inhibition of cathepsin B. Biochem. Biophys. Res. Commun. 477, 96–102.
Ngoungoure, V. L. N., Schluesener, J., Moundipa, P. F. S., Chluesener, H. (2015) Natural polyphenols binding to amyloid: A broad class of compounds to treat different human amyloid diseases. Mol. Nutr. Food Res. 59, 8–20.
Ono, K., Li, L., Takamura, Y., Yoshiike, Y., Zhu, L., Han, F., Mao, X., Ikeda, T., Takasaki, J., Nishijo, H., Takashima, A., Teplow, D. B., Zagorski, M. G., Yamada, M. (2012) Phenolic compounds prevent amyloid ß-protein oligomerization and synaptic dysfunction by site-specific binding. J. Biol. Chem. 287, 14631–14643.
Pandey, N., Strider, J., Nolan, W. C., Yan, S. X., Galvin, J. E. (2008) Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathol. 115, 479–489.
Porat, Y., Abramowitz, A., Gazit, E. (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67, 27–37.
Porzoor, A., Alford, B., Hügel, H., Grando, D., Caine, J., Macreadie, I. (2015) Anti-amyloidogenic properties of some phenolic compounds. Biomolecules 5, 505–527.
Simon, L. M., Laczkó, I., Demcsák, A., Tóth, D., Kotormán, M., Fülöp, L. (2012) The formation of amyloid-like fibrils of a-chymotrypsin in different aqueous organic solvents. Protein Pept. Lett. 19, 544–550.
Solanki, I., Parihar, P., Mansuri, M. L., Parihar, M. S. (2015) Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv. Nutr. 6, 64–72.
Stefani, M. (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim. Biophys. Acta 1739, 5–25.
Suantawee, T., Wesarachanon, K., Anantsuphasak, K., Daenphetploy, T., Thien-Ngern, S., Thilavech, T., Pasukamonset, P., Ngamukote, S., Adisakwattana, S. (2015) Protein glycation inhibitory activity and antioxidant capacity of clove extract. J. Food Sci. Technol. 52, 3843–3850.
Torres, J. E. D., Gassara, F., Kouassi, A. P., Brar, S. K., Belkacemi, K. (2017) Spice use in food: Properties and benefits. Crit. Rev. Food Sci. Nutr. 57, 1078–1088.
Touba, E. P., Zakaria, M., Tahereh, E. (2012) Anti-fungal activity of cold and hot water extracts of spices against fungal pathogens of Roselle (Hibiscus sabdariffa) in vitro. Microb. Pathog. 52, 125–129.
de Vasconcelos, D. N., Ximenes, V. F. (2015) Albumin-induced circular dichroism in Congo red: Applications for studies of amyloid-like fibril aggregates and binding sites. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 150, 321–330.
Wang, S. S., Liu, K. N., Lee, W. H. (2009) Effect of curcumin on the amyloid fibrillogenesis of hen egg-white lysozyme. Biophys. Chem. 144, 78–87.
Waterhouse, A. L. (2002) Determination of Total Phenolics. In Current Protocols in Food Analytical Chemistry John Wiley & Sons, Inc., Hoboken, NJ, USA. (doi:10.1002/0471142913.faa0101s06)
Wu, C., Scott, J., Shea, J. E. (2012) Binding of congo red to amyloid protofibrils of the Alzheimer Aß(9–40) peptide probed by molecular dynamics simulations. Biophys. J. 103, 550–557.
Zhang, C., Browne, A., Child, D., Tanzi, R. E. (2010) Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. J. Biol. Chem. 285, 28472–28480.
Zhao, R., So, M., Maat, H., Ray, N. J., Arisaka, F., Goto, Y., Carver, J. A., Hall, D. (2016) Measurement of amyloid formation by turbidity assay–seeing through the cloud. Biophys. Rev. 8, 445–471.