Authors:
Tamara Babic Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia

Search for other papers by Tamara Babic in
Current site
Google Scholar
PubMed
Close
,
Jelena Dinic Institute for Biological Research “Sinisa Stankovic”, Department of Neurobiology, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia

Search for other papers by Jelena Dinic in
Current site
Google Scholar
PubMed
Close
,
Sonja Stojkovic Buric Institute for Biological Research “Sinisa Stankovic”, Department of Neurobiology, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia

Search for other papers by Sonja Stojkovic Buric in
Current site
Google Scholar
PubMed
Close
,
Stefan Hadzic Institute for Biological Research “Sinisa Stankovic”, Department of Neurobiology, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia

Search for other papers by Stefan Hadzic in
Current site
Google Scholar
PubMed
Close
,
Milica Pesic Institute for Biological Research “Sinisa Stankovic”, Department of Neurobiology, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia

Search for other papers by Milica Pesic in
Current site
Google Scholar
PubMed
Close
,
Dragica Radojkovic Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia

Search for other papers by Dragica Radojkovic in
Current site
Google Scholar
PubMed
Close
, and
Aleksandra Divac Rankov Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia

Search for other papers by Aleksandra Divac Rankov in
Current site
Google Scholar
PubMed
Close
Restricted access

Cancer drug resistance and poor selectivity towards cancer cells demand the constant search for new therapeutics. PI3K-Akt-mTOR and RAS-MAPK-ERK signaling pathways are key mechanisms involved in cell survival, proliferation, differentiation, and metabolism and their deregulation in cancer can promote development of therapy resistance. We investigated the effects of targeted inhibitors (wortmannin, GSK690693, AZD2014 and tipifarnib) towards these two pathways on early zebrafish and sea urchin development to assess their toxicity in normal, fast proliferating cells. PI3K inhibitor wortmannin and RAS inhibitor tipifarnib displayed highest toxicity while GSK690693, a pan-Akt kinase inhibitor, exhibited a less significant impact on embryo survival and development. Moreover, inhibition of the upstream part of the PI3K-Akt-mTOR pathway (wortmannin/GSK690693 co-treatment) produced a synergistic effect and impacted zebrafish embryo survival and development at much lower concentrations. Dual mTORC1/mTORC2 inhibitor AZD2014 showed no considerable effects on embryonic cells of zebrafish in concentrations substantially toxic in cancer cells. AZD2014 also caused the least prominent effects on sea urchin embryo development compared to other inhibitors. Significant toxicity of AZD2014 in human cancer cells, its capacity to sensitize resistant cancers, lower antiproliferative activity against human normal cell lines and fast proliferating embryonic cells could make this agent a promising candidate for anticancer therapy.

  • 1.

    Ahronian, L. G., Corcoran, R. B. (2017) Strategies for monitoring and combating resistance to combination kinase inhibitors for cancer therapy. Genome Med. 9, 37.

    • Search Google Scholar
    • Export Citation
  • 2.

    Altomare, D. A., Zhang, L., Deng, J., Di Cristofano, A., Klein-Szanto, A. J., Kumar, R. (2010) GSK690693 delays tumor onset and progression in genetically defined mouse models expressing activated Akt. Clin. Cancer Res. 16, 486496.

    • Search Google Scholar
    • Export Citation
  • 3.

    Asati, V., Mahapatra, D. K., Bharti, S. K. (2017) K-Ras and its inhibitors towards personalized cancer treatment: Pharmacological and structural perspectives. Eur. J. Med. Chem. 125, 299314.

    • Search Google Scholar
    • Export Citation
  • 4.

    Berghmans, S., Jette, C., Langenau, D., Hsu, K., Stewart, R., Look, T. (2005) Making waves in cancer research: new models in the zebrafish. Biotechniques 39, 227237.

    • Search Google Scholar
    • Export Citation
  • 5.

    Blagosklonny, M. V. (2004) Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle 3, 10351042.

  • 6.

    Brausch, J. M., Rand, G. M. (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82, 15181532.

    • Search Google Scholar
    • Export Citation
  • 7.

    Carol, H., Morton, C. L., Gorlick, R., Kolb, E. A., Keir, S. T., Reynolds, C. P. (2010) Initial testing (stage 1) of the Akt inhibitor GSK690693 by the pediatric preclinical testing program. Pediatr. Blood Cancer. 55, 13291337.

    • Search Google Scholar
    • Export Citation
  • 8.

    De la Paz, J. F., Beiza, N., Paredes-Zuniga, S., Hoare, M. S., Allende, M. L. (2017) Triazole Fungicides Inhibit Zebrafish Hatching by Blocking the Secretory Function of Hatching Gland Cells. Int. J. Mol. Sci. 18.

    • Search Google Scholar
    • Export Citation
  • 9.

    De Nadai, C., Huitorel, P., Chiri, S., Ciapa, B. (1998) Effect of wortmannin, an inhibitor of phosphatidylinositol 3-kinase, on the first mitotic divisions of the fertilized sea urchin egg. J. Cell Sci. 111, 25072518.

    • Search Google Scholar
    • Export Citation
  • 10.

    Divac Rankov, A., Ljujic, M., Petric, M., Radojkovic, D., Pesic, M., Dinic, J. (2017) Targeting autophagy to modulate cell survival: a comparative analysis in cancer, normal and embryonic cells. Histochem. Cell Biol. 148, 529544.

    • Search Google Scholar
    • Export Citation
  • 11.

    Eimon, P. M., Rubinstein, A. L. (2009) The use of in vivo zebrafish assays in drug toxicity screening. Expert Opin. Drug Metab. Toxicol. 5, 393401.

    • Search Google Scholar
    • Export Citation
  • 12.

    Garcia, G. R., Noyes, P. D., Tanguay, R. L. (2016) Advancements in zebrafish applications for 21st century toxicology. Pharmacol. Ther. 161, 1121.

    • Search Google Scholar
    • Export Citation
  • 13.

    Guichard, S. M., Curwen, J., Bihani, T., D’Cruz, C. M., Yates, J. W., Grondine, M. (2015) AZD2014, an Inhibitor of mTORC1 and mTORC2, Is Highly Effective in ER+ Breast Cancer When Administered Using Intermittent or Continuous Schedules. Mol. Cancer Ther. 14, 25082518.

    • Search Google Scholar
    • Export Citation
  • 14.

    He, J. H., Gao, J. M., Huang, C. J., Li, C. Q. (2014) Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol. Teratol. 42, 3542.

    • Search Google Scholar
    • Export Citation
  • 15.

    He, Q., Liu, K., Wang, S., Hou, H., Yuan, Y., Wang, X. (2012) Toxicity induced by emodin on zebrafish embryos. Drug Chem. Toxicol. 35, 149154.

    • Search Google Scholar
    • Export Citation
  • 16.

    Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M. (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498503.

    • Search Google Scholar
    • Export Citation
  • 17.

    Hung, M. W., Zhang, Z. J., Li, S., Lei, B., Yuan, S., Cui, G. Z. (2012) From omics to drug metabolism and high content screen of natural product in zebrafish: a new model for discovery of neuroactive compound. Evid. Based Complement. Alternat. Med. 2012, 605303.

    • Search Google Scholar
    • Export Citation
  • 18.

    Huo, H. Z., Zhou, Z. Y., Wang, B., Qin, J., Liu, W. Y., Gu, Y. (2014) Dramatic suppression of colorectal cancer cell growth by the dual mTORC1 and mTORC2 inhibitor AZD-2014. Biochem. Biophys. Res. Commun. 443, 406412.

    • Search Google Scholar
    • Export Citation
  • 19.

    Kahn, J., Hayman, T. J., Jamal, M., Rath, B. H., Kramp, T., Camphausen, K. (2014) The mTORC1/ mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells. Neuro. Oncol. 16, 2937.

    • Search Google Scholar
    • Export Citation
  • 20.

    Korkina, L. G., Deeva, I. B., De Biase, A., Iaccarino, M., Oral, R., Warnau, M. (2000) Redoxdependent toxicity of diepoxybutane and mitomycin C in sea urchin embryogenesis. Carcinogenesis 21, 213220.

    • Search Google Scholar
    • Export Citation
  • 21.

    Levy, D. S., Kahana, J. A., Kumar, R. (2009) AKT inhibitor, GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines. Blood. 113, 17231729.

    • Search Google Scholar
    • Export Citation
  • 22.

    Liao, H., Huang, Y., Guo, B., Liang, B., Liu, X., Ou, H. (2015) Dramatic antitumor effects of the dual mTORC1 and mTORC2 inhibitor AZD2014 in hepatocellular carcinoma. Am. J. Cancer Res. 5, 125139.

    • Search Google Scholar
    • Export Citation
  • 23.

    Marin, J. J. G., Lozano, E., Herraez, E., Asensio, M., Di Giacomo, S., Romero, M. R. (2018) Chemoresistance and chemosensitization in cholangiocarcinoma. Biochim. Biophys. Acta 1864, 14441453.

    • Search Google Scholar
    • Export Citation
  • 24.

    McCubrey, J. A., Steelman, L. S., Abrams, S. L., Lee, J. T., Chang, F., Bertrand, F. E. (2006) Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv. Enzyme Regul. 46, 249279.

    • Search Google Scholar
    • Export Citation
  • 25.

    Mendieta-Serrano, M. A., Schnabel, D., Lomeli, H., Salas-Vidal, E. (2013) Cell proliferation patterns in early zebrafish development. Anat. Rec. (Hoboken). 296, 759773.

    • Search Google Scholar
    • Export Citation
  • 26.

    Mendoza, M. C., Er, E. E., Blenis, J. (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 36, 320328.

    • Search Google Scholar
    • Export Citation
  • 27.

    Milosevic, Z., Pesic, M., Stankovic, T., Dinic, J., Milovanovic, Z., Stojsic, J. (2014) Targeting RASMAPK- ERK and PI3K-AKT-mTOR signal transduction pathways to chemosensitize anaplastic thyroid carcinoma. Transl. Res. 164, 411423.

    • Search Google Scholar
    • Export Citation
  • 28.

    Nishioka, D., Marcell, V., Cunningham, M., Khan, M., Von Hoff, D. D., Izbicka, E. (2003) The use of early sea urchin embryos in anticancer drug testing. Methods Mol. Med. 85, 265276.

    • Search Google Scholar
    • Export Citation
  • 29.

    Samatar, A. A., Poulikakos, P. I. (2014) Targeting RAS-ERK signalling in cancer: promises and challenges. Nat. Rev. Drug Discov. 13, 928942.

    • Search Google Scholar
    • Export Citation
  • 30.

    Sconzo, G., Romancino, D., Fasulo, G., Cascino, D., Giudice, G. (1995) Effect of doxorubicin and phenytoin on sea urchin development. Pharmazie 50, 616619.

    • Search Google Scholar
    • Export Citation
  • 31.

    Torres, T., Cunha, I., Martins, R., Santos, M. M. (2016) Screening the Toxicity of Selected Personal Care Products Using Embryo Bioassays: 4-MBC, Propylparaben and Triclocarban. Int. J. Mol. Sci. 17.

    • Search Google Scholar
    • Export Citation
  • 32.

    Wang, Y., Zhong, T., Qian, L., Dong, Y., Jiang, Q., Tan, L. (2005) Wortmannin induces zebrafish cardia bifida through a mechanism independent of phosphoinositide 3-kinase and myosin light chain kinase. Biochem. Biophys. Res. Commun. 331, 303308.

    • Search Google Scholar
    • Export Citation
  • 33.

    Yu, C. C., Huang, H. B., Hung, S. K., Liao, H. F., Lee, C. C., Lin, H. Y. (2016) AZD2014 Radiosensitizes Oral Squamous Cell Carcinoma by Inhibiting AKT/mTOR Axis and Inducing G1/ G2/M Cell Cycle Arrest. PLoS One. 11, e0151942.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editorial Board

    1. Csányi, Vilmos (Göd)
    1. Dudits, Dénes (Szeged)
    1. Falus, András (Budapest)
    1. Fischer, Ernő (Pécs)
    1. Gábriel, Róbert (Pécs)
    1. Gulya, Károly (Szeged)
    1. Gulyás, Balázs (Stockholm)
    1. Hajós, Ferenc (Budapest)
    1. Hámori, József (Budapest)
    1. Heszky, László (Gödöllő)
    1. Hideg, Éva (Szeged)
    1. E. Ito (Sanuki)
    1. Janda, Tibor (Martonvásár)
    1. Kavanaugh, Michael P. (Missoula)
    1. Kása, Péter (Szeged)
    1. Klein, Éva (Stockholm)
    1. Kovács, János (Budapest)
    1. Brigitte Mauch-Mani (Neuchâtel)
    1. Nässel, Dick R. (Stockholm)
    1. Nemcsók, János (Szeged)
    1. Péczely, Péter (Gödöllő)
    1. Roberts, D. F. (Newcastle-upon-Tyne)
    1. Sakharov, Dimitri A. (Moscow)
    1. Singh, Meharvan (Fort Worth)
    1. Sipiczky, Mátyás (Debrecen)
    1. Szeberényi, József (Pécs)
    1. Székely, György (Debrecen)
    1. Tari, Irma (Szeged)
    1. Vágvölgyi, Csaba (Szeged),
    1. L. Zaborszky (Newark)

 

Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006
E-mail: elekes@tres.blki.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Acta Biologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)