Cancer drug resistance and poor selectivity towards cancer cells demand the constant search for new therapeutics. PI3K-Akt-mTOR and RAS-MAPK-ERK signaling pathways are key mechanisms involved in cell survival, proliferation, differentiation, and metabolism and their deregulation in cancer can promote development of therapy resistance. We investigated the effects of targeted inhibitors (wortmannin, GSK690693, AZD2014 and tipifarnib) towards these two pathways on early zebrafish and sea urchin development to assess their toxicity in normal, fast proliferating cells. PI3K inhibitor wortmannin and RAS inhibitor tipifarnib displayed highest toxicity while GSK690693, a pan-Akt kinase inhibitor, exhibited a less significant impact on embryo survival and development. Moreover, inhibition of the upstream part of the PI3K-Akt-mTOR pathway (wortmannin/GSK690693 co-treatment) produced a synergistic effect and impacted zebrafish embryo survival and development at much lower concentrations. Dual mTORC1/mTORC2 inhibitor AZD2014 showed no considerable effects on embryonic cells of zebrafish in concentrations substantially toxic in cancer cells. AZD2014 also caused the least prominent effects on sea urchin embryo development compared to other inhibitors. Significant toxicity of AZD2014 in human cancer cells, its capacity to sensitize resistant cancers, lower antiproliferative activity against human normal cell lines and fast proliferating embryonic cells could make this agent a promising candidate for anticancer therapy.
Ahronian, L. G., Corcoran, R. B. (2017) Strategies for monitoring and combating resistance to combination kinase inhibitors for cancer therapy. Genome Med. 9, 37.
Altomare, D. A., Zhang, L., Deng, J., Di Cristofano, A., Klein-Szanto, A. J., Kumar, R. (2010) GSK690693 delays tumor onset and progression in genetically defined mouse models expressing activated Akt. Clin. Cancer Res. 16, 486–496.
Asati, V., Mahapatra, D. K., Bharti, S. K. (2017) K-Ras and its inhibitors towards personalized cancer treatment: Pharmacological and structural perspectives. Eur. J. Med. Chem. 125, 299–314.
Berghmans, S., Jette, C., Langenau, D., Hsu, K., Stewart, R., Look, T. (2005) Making waves in cancer research: new models in the zebrafish. Biotechniques 39, 227–237.
Blagosklonny, M. V. (2004) Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle 3, 1035–1042.
Brausch, J. M., Rand, G. M. (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82, 1518–1532.
Carol, H., Morton, C. L., Gorlick, R., Kolb, E. A., Keir, S. T., Reynolds, C. P. (2010) Initial testing (stage 1) of the Akt inhibitor GSK690693 by the pediatric preclinical testing program. Pediatr. Blood Cancer. 55, 1329–1337.
De la Paz, J. F., Beiza, N., Paredes-Zuniga, S., Hoare, M. S., Allende, M. L. (2017) Triazole Fungicides Inhibit Zebrafish Hatching by Blocking the Secretory Function of Hatching Gland Cells. Int. J. Mol. Sci. 18.
De Nadai, C., Huitorel, P., Chiri, S., Ciapa, B. (1998) Effect of wortmannin, an inhibitor of phosphatidylinositol 3-kinase, on the first mitotic divisions of the fertilized sea urchin egg. J. Cell Sci. 111, 2507–2518.
Divac Rankov, A., Ljujic, M., Petric, M., Radojkovic, D., Pesic, M., Dinic, J. (2017) Targeting autophagy to modulate cell survival: a comparative analysis in cancer, normal and embryonic cells. Histochem. Cell Biol. 148, 529–544.
Eimon, P. M., Rubinstein, A. L. (2009) The use of in vivo zebrafish assays in drug toxicity screening. Expert Opin. Drug Metab. Toxicol. 5, 393–401.
Garcia, G. R., Noyes, P. D., Tanguay, R. L. (2016) Advancements in zebrafish applications for 21st century toxicology. Pharmacol. Ther. 161, 11–21.
Guichard, S. M., Curwen, J., Bihani, T., D’Cruz, C. M., Yates, J. W., Grondine, M. (2015) AZD2014, an Inhibitor of mTORC1 and mTORC2, Is Highly Effective in ER+ Breast Cancer When Administered Using Intermittent or Continuous Schedules. Mol. Cancer Ther. 14, 2508–2518.
He, J. H., Gao, J. M., Huang, C. J., Li, C. Q. (2014) Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol. Teratol. 42, 35–42.
He, Q., Liu, K., Wang, S., Hou, H., Yuan, Y., Wang, X. (2012) Toxicity induced by emodin on zebrafish embryos. Drug Chem. Toxicol. 35, 149–154.
Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M. (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503.
Hung, M. W., Zhang, Z. J., Li, S., Lei, B., Yuan, S., Cui, G. Z. (2012) From omics to drug metabolism and high content screen of natural product in zebrafish: a new model for discovery of neuroactive compound. Evid. Based Complement. Alternat. Med. 2012, 605303.
Huo, H. Z., Zhou, Z. Y., Wang, B., Qin, J., Liu, W. Y., Gu, Y. (2014) Dramatic suppression of colorectal cancer cell growth by the dual mTORC1 and mTORC2 inhibitor AZD-2014. Biochem. Biophys. Res. Commun. 443, 406–412.
Kahn, J., Hayman, T. J., Jamal, M., Rath, B. H., Kramp, T., Camphausen, K. (2014) The mTORC1/ mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells. Neuro. Oncol. 16, 29–37.
Korkina, L. G., Deeva, I. B., De Biase, A., Iaccarino, M., Oral, R., Warnau, M. (2000) Redoxdependent toxicity of diepoxybutane and mitomycin C in sea urchin embryogenesis. Carcinogenesis 21, 213–220.
Levy, D. S., Kahana, J. A., Kumar, R. (2009) AKT inhibitor, GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines. Blood. 113, 1723–1729.
Liao, H., Huang, Y., Guo, B., Liang, B., Liu, X., Ou, H. (2015) Dramatic antitumor effects of the dual mTORC1 and mTORC2 inhibitor AZD2014 in hepatocellular carcinoma. Am. J. Cancer Res. 5, 125–139.
Marin, J. J. G., Lozano, E., Herraez, E., Asensio, M., Di Giacomo, S., Romero, M. R. (2018) Chemoresistance and chemosensitization in cholangiocarcinoma. Biochim. Biophys. Acta 1864, 1444–1453.
McCubrey, J. A., Steelman, L. S., Abrams, S. L., Lee, J. T., Chang, F., Bertrand, F. E. (2006) Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv. Enzyme Regul. 46, 249–279.
Mendieta-Serrano, M. A., Schnabel, D., Lomeli, H., Salas-Vidal, E. (2013) Cell proliferation patterns in early zebrafish development. Anat. Rec. (Hoboken). 296, 759–773.
Mendoza, M. C., Er, E. E., Blenis, J. (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 36, 320–328.
Milosevic, Z., Pesic, M., Stankovic, T., Dinic, J., Milovanovic, Z., Stojsic, J. (2014) Targeting RASMAPK- ERK and PI3K-AKT-mTOR signal transduction pathways to chemosensitize anaplastic thyroid carcinoma. Transl. Res. 164, 411–423.
Nishioka, D., Marcell, V., Cunningham, M., Khan, M., Von Hoff, D. D., Izbicka, E. (2003) The use of early sea urchin embryos in anticancer drug testing. Methods Mol. Med. 85, 265–276.
Samatar, A. A., Poulikakos, P. I. (2014) Targeting RAS-ERK signalling in cancer: promises and challenges. Nat. Rev. Drug Discov. 13, 928–942.
Sconzo, G., Romancino, D., Fasulo, G., Cascino, D., Giudice, G. (1995) Effect of doxorubicin and phenytoin on sea urchin development. Pharmazie 50, 616–619.
Torres, T., Cunha, I., Martins, R., Santos, M. M. (2016) Screening the Toxicity of Selected Personal Care Products Using Embryo Bioassays: 4-MBC, Propylparaben and Triclocarban. Int. J. Mol. Sci. 17.
Wang, Y., Zhong, T., Qian, L., Dong, Y., Jiang, Q., Tan, L. (2005) Wortmannin induces zebrafish cardia bifida through a mechanism independent of phosphoinositide 3-kinase and myosin light chain kinase. Biochem. Biophys. Res. Commun. 331, 303–308.
Yu, C. C., Huang, H. B., Hung, S. K., Liao, H. F., Lee, C. C., Lin, H. Y. (2016) AZD2014 Radiosensitizes Oral Squamous Cell Carcinoma by Inhibiting AKT/mTOR Axis and Inducing G1/ G2/M Cell Cycle Arrest. PLoS One. 11, e0151942.