Authors:
Tamás Gáll MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, Debrecen, Hungary

Search for other papers by Tamás Gáll in
Current site
Google Scholar
PubMed
Close
,
Gábor Lehoczki Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary

Search for other papers by Gábor Lehoczki in
Current site
Google Scholar
PubMed
Close
,
Gyöngyi Gyémánt Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary

Search for other papers by Gyöngyi Gyémánt in
Current site
Google Scholar
PubMed
Close
,
Tamás Emri Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary

Search for other papers by Tamás Emri in
Current site
Google Scholar
PubMed
Close
,
Zsuzsa M. Szigeti Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary

Search for other papers by Zsuzsa M. Szigeti in
Current site
Google Scholar
PubMed
Close
,
György Balla MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

Search for other papers by György Balla in
Current site
Google Scholar
PubMed
Close
,
József Balla Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

Search for other papers by József Balla in
Current site
Google Scholar
PubMed
Close
, and
István Pócsi Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary

Search for other papers by István Pócsi in
Current site
Google Scholar
PubMed
Close
Restricted access

Siderophores are produced by a number of microbes to capture iron with outstandingly high affinity, which property also generates biomedical and industrial interests. Desferrioxamine E (DFO-E) secreted by streptomycetes bacteria can be an ideal candidate for iron chelation therapy, which necessitates its cost-effective production for in vitro and animal studies. This study focused on the optimization of DFO-E production by Streptomyces parvulus CBS548.68. Different combinations of various carbon and nitrogen sources as well as the addition of 3-morpholinopropane-1-sulfonic acid (MOPS) markedly affected DFO-E yields, which were attributed, at least in part, to the higher biomass productions found in MOPS-supplemented cultures. In MOPS-supplemented glucose and sodium glutamate medium, DFO-E productions as high as 2,009 ± 90 mg/l of culture medium were reached. High-performance liquid chromatography analysis demonstrated that a simple two-step purification process yielded DFO-E preparations with purities of ∼97%. Matrix assisted laser desorption ionization-time of flight mass spectrometry analysis showed that purified DFO-E always contained traces of desferrioxamine D2.

Supplementary Materials

    • Supplementary Material
  • 1.

    Guerinot, M. L. : Microbial iron transport. Annu Rev Microbiol 48, 743772 (1994).

  • 2.

    Schalk, I. J. , Yue, W. W. , Buchanan, S. K. : Recognition of iron-free siderophores by TonB-dependent iron transporters. Mol Microbiol 54, 1422 (2004).

    • Search Google Scholar
    • Export Citation
  • 3.

    Barry, S. M. , Challis, G. L. : Recent advances in siderophore biosynthesis. Curr Opin Chem Biol 13, 205215 (2009).

  • 4.

    Hider, R. C. , Kong, X. : Chemistry and biology of siderophores. Nat Prod Rep 27, 637657 (2010).

  • 5.

    Chu, B. C. , Garcia-Herrero, A. , Johanson, T. H. , Krewulak, K. D. , Lau, C. K. , Peacock, R. S. , Slavinskaya, Z. , Vogel, H. J. : Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23, 601611 (2010).

    • Search Google Scholar
    • Export Citation
  • 6.

    Tam, T. F. , Leung-Toung, R. , Li, W. , Wang, Y. , Karimian, K. , Spino, M. : Iron chelator research: Past, present, and future. Curr Med Chem 10, 983995 (2003).

    • Search Google Scholar
    • Export Citation
  • 7.

    Liu, Z. D. , Hider, R. C. : Design of clinically useful iron(III)-selective chelators. Med Res Rev 22, 2664 (2002).

  • 8.

    Porter, J. B. : Evaluation of new iron chelators for clinical use. Acta Haematol 95, 1325 (1996).

  • 9.

    Rice-Evans, C. , Omorphos, S. C. , Baysal, E. : Sickle cell membranes and oxidative damage. Biochem J 237, 265269 (1986).

  • 10.

    Videla, L. A. , Villena, M. I. , Salgado, C. , Canales, P. , Lissi, E. A. : Antioxidant capacity of desferrioxamine in biological systems. Biochem Int 15, 205214 (1987).

    • Search Google Scholar
    • Export Citation
  • 11.

    Hartley, A. , Davies, M. , Rice-Evans, C. : Desferrioxamine as a lipid chain-breaking antioxidant in sickle erythrocyte membranes. FEBS Lett 264, 145148 (1990).

    • Search Google Scholar
    • Export Citation
  • 12.

    Li, L. , Frei, B. : Prolonged exposure to LPS increases iron, heme, and p22phox levels and NADPH oxidase activity in human aortic endothelial cells: Inhibition by desferrioxamine. Arterioscler Thromb Vasc Biol 29, 732738 (2009).

    • Search Google Scholar
    • Export Citation
  • 13.

    Swaminathan, S. , Fonseca, V. A. , Alam, M. G. , Shah, S. V. : The role of iron in diabetes and its complications. Diabetes Care 30, 19261933 (2007).

    • Search Google Scholar
    • Export Citation
  • 14.

    Sullivan, J. L. : Iron in arterial plaque: Modifiable risk factor for atherosclerosis. Biochim Biophys Acta 1790, 718723 (2009).

  • 15.

    Tang, T. Y. , Howarth, S. P. S. , Miller, S. R. , Graves, M. J. , U-King-Im, J. M. , Li, Z. Y. , Walsh, S. R. , Hayes, P. D. , Varty, K. , Gillard, J. H. : Comparison of the inflammatory burden of truly asymptomatic carotid atheroma with atherosclerotic plaques in patients with asymptomatic carotid stenosis undergoing coronary artery bypass grafting: An ultrasmall superparamagnetic iron oxide enhanced magnet. Eur J Vasc Endovasc Surg 35, 392398 (2008).

    • Search Google Scholar
    • Export Citation
  • 16.

    Pócsi, I. , Jeney, V. , Kertai, P. , Pócsi, I. , Emri, T. , Gyémánt, G. , Fésüs, L. , Balla, J. , Balla, G. : Fungal siderophores function as protective agents of LDL oxidation and are promising anti-atherosclerotic metabolites in functional food. Mol Nutr Food Res 52, 14341447 (2008).

    • Search Google Scholar
    • Export Citation
  • 17.

    Heath, J. L. , Weiss, J. M. , Lavau, C. P. , Wechsler, D. S. : Iron deprivation in cancer – Potential therapeutic implications. Nutrients 5, 28362859 (2013).

    • Search Google Scholar
    • Export Citation
  • 18.

    Lane, D. J. R. , Mills, T. M. , Shafie, N. H. , Merlot, A. M. , Saleh Moussa, R. , Kalinowski, D. S. , Kovacevic, Z. , Richardson, D. R. : Expanding horizons in iron chelation and the treatment of cancer: Role of iron in the regulation of ER stress and the epithelial-mesenchymal transition. Biochim Biophys Acta 1845, 166181 (2014).

    • Search Google Scholar
    • Export Citation
  • 19.

    Todokoro, T. , Fukuda, K. , Matsumura, K. , Irie, M. , Hata, Y. : Production of the natural iron chelator deferriferrichrysin from Aspergillus oryzae and evaluation as a novel food-grade antioxidant. J Sci Food Agric 96, 29983006 (2016).

    • Search Google Scholar
    • Export Citation
  • 20.

    Shimoni, E. , Ampel, M. , Zähner, H. , Neeman, I. : Antioxidant properties of desferrioxamine E, a new hydroxamate antioxidant. J Am Oil Chem Soc 75, 14531455 (1998).

    • Search Google Scholar
    • Export Citation
  • 21.

    Nakouti, I. , Hobbs, G. : Incorporation of L-lysine and 2,2’-dipyridyl in the growth media promotes desferrioxamine E production by an actinobacterium. World J Microbiol Biotechnol 30, 331334 (2014).

    • Search Google Scholar
    • Export Citation
  • 22.

    Meiwes, J. , Fiedler, H. P. , Zähner, H. , Konetschny-Rapp, S. , Jung, G. : Production of desferrioxamine E and new analogues by directed fermentation and feeding fermentation. Appl Microbiol Biotechnol 32, 505510 (1990).

    • Search Google Scholar
    • Export Citation
  • 23.

    Lee, S. L. , Chen, W. C. : Optimization of medium composition for the production of glucosyltransferase by Aspergillus niger with response surface methodology. Enzyme Microb Technol 21, 436440 (1997).

    • Search Google Scholar
    • Export Citation
  • 24.

    Tóth, V. , Antal, K. , Gyémánt, G. , Miskei, M. , Pócsi, I. , Emri, T. : Optimization of coprogen production in Neurospora crassa. Acta Biol Hung 60, 321328 (2009).

    • Search Google Scholar
    • Export Citation
  • 25.

    Murugappan, R. M. , Aravinth, A. , Rajaroobia, R. , Karthikeyan, M. , Alamelu, M. R. : Optimization of MM9 medium constituents for enhancement of siderophoregenesis in marine Pseudomonas putida using response surface methodology. Indian J Microbiol 52, 433441 (2012).

    • Search Google Scholar
    • Export Citation
  • 26.

    Ruiz, B. , Chávez, A. , Forero, A. , García-Huante, Y. , Romero, A. , Sánchez, M. , Rocha, D. , Sánchez, B. , Rodríguez-Sanoja, R. , Sánchez, S. , Langley, E. : Production of microbial secondary metabolites: Regulation by the carbon source. Crit Rev Microbiol 36, 146167 (2010).

    • Search Google Scholar
    • Export Citation
  • 27.

    Chiani, M. , Akbarzadeh, A. , Farhangi, A. , Mazinani, M. , Saffari, Z. , Emadzadeh, K. , Mehrabi, M. R. : Optimization of culture medium to increase the production of desferrioxamine B (Desferal) in Streptomyces pilosus. Pak J Biol Sci 13, 546550 (2010).

    • Search Google Scholar
    • Export Citation
  • 28.

    Winkelmann, G. : Siderophore transport in fungi. In Winkelmann, G. (ed): Microbial Transport Systems. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2001, pp. 463480.

    • Search Google Scholar
    • Export Citation
  • 29.

    Szigeti, Z. M. , Szaniszló, S. , Fazekas, E. , Gyémánt, G. , Szabon, J. , Antal, K. , Emri, T. , Balla, J. , Balla, G. , Csernoch, L. , Pócsi, I. : Optimization of triacetylfusarinine C and ferricrocin productions in Aspergillus fumigatus. Acta Microbiol Immunol Hung 61, 107119 (2014).

    • Search Google Scholar
    • Export Citation
  • 30.

    Emri, T. , Tóth, V. , Nagy, C. T. , Nagy, G. , Pócsi, I. , Gyémánt, G. , Antal, K. , Balla, J. , Balla, G. , Román, G. , Kovács, I. , Pócsi, I. : Towards high-siderophore-content foods: Optimisation of coprogen production in submerged cultures of Penicillium nalgiovense. J Sci Food Agric 93, 22212228 (2013).

    • Search Google Scholar
    • Export Citation
  • 31.

    Duffy, B. K. , Defago, G. : Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65, 24292438 (1999).

    • Search Google Scholar
    • Export Citation
  • 32.

    Mortazavi, M. , Akbarzadeh, A. : Improvement of desferrioxamine B production of Streptomyces pilosus ATCC 19797 with use of protease inhibitor and minerals related to its activity. Indian J Clin Biochem 27, 274277 (2012).

    • Search Google Scholar
    • Export Citation
  • 33.

    Chiani, M. , Akbarzadeh, A. , Farhangi, A. , Mehrabi, M. R. : Production of desferrioxamine B (Desferal) using corn steep liquor in Streptomyces pilosus. Pak J Biol Sci 13, 11511155 (2010).

    • Search Google Scholar
    • Export Citation
  • 34.

    Petrik, M. , Haas, H. , Laverman, P. , Schrettl, M. , Franssen, G. M. , Blatzer, M. , Decristoforo, C. : 68Ga-triacetylfusarinine C and 68Ga-ferrioxamine E for Aspergillus infection imaging: Uptake specificity in various microorganisms. Mol Imaging Biol 16, 102108 (2014).

    • Search Google Scholar
    • Export Citation
  • 35.

    Gasser, V. , Baco, E. , Cunrath, O. , August, P. S. , Perraud, Q. , Zill, N. , Schleberger, C. , Schmidt, A. , Paulen, A. , Bumann, D. , Mislin, G. L. A. , Schalk, I. J. : Catechol siderophores repress the pyochelin pathway and activate the enterobactin pathway in Pseudomonas aeruginosa: An opportunity for siderophore-antibiotic conjugates development. Environ Microbiol 18, 819832 (2015).

    • Search Google Scholar
    • Export Citation
  • 36.

    Sansone, G. , Rezza, I. , Calvente, V. , Benuzzi, D. , de Tosetti, M. I. S. : Control of Botrytis cinerea strains resistant to iprodione in apple with rhodotorulic acid and yeasts. Postharvest Biol Technol 35, 245251 (2005).

    • Search Google Scholar
    • Export Citation
  • 37.

    Saravanakumar, D. , Ciavorella, A. , Spadaro, D. , Garibaldi, A. , Gullino, M. L. : Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biol Technol 49, 121128 (2008).

    • Search Google Scholar
    • Export Citation
  • 38.

    Rajkumar, M. , Ae, N. , Prasad, M. N. V. , Freitas, H. : Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28, 142149 (2010).

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2022  
Web of Science  
Total Cites
WoS
689
Journal Impact Factor 1.5
Rank by Impact Factor

Immunology (Q4)
Microbiology (Q4)

Impact Factor
without
Journal Self Cites
1.3
5 Year
Impact Factor
1.7
Journal Citation Indicator 0.34
Rank by Journal Citation Indicator

Immunology (Q4)
Microbiology (Q4)

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0.333
Scimago Quartile Score

Immunology and Microbiology (miscellaneous) (Q3)
Infectious Diseases (Q3)
Medicine (miscellaneous) (Q3)
Microbiology (medical) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
General Immunology and Microbiology 29/53 (46th PCTL)
Infectious Diseases 186/304 (38th PCTL)
Microbiology 85/124 (31st PCTL)
Scopus
SNIP
0.484

2021  
Web of Science  
Total Cites
WoS
696
Journal Impact Factor 2,298
Rank by Impact Factor Immunology 141/161
Microbiology 118/136
Impact Factor
without
Journal Self Cites
2,143
5 Year
Impact Factor
1,925
Journal Citation Indicator 0,39
Rank by Journal Citation Indicator Immunology 146/177
Microbiology 129/157
Scimago  
Scimago
H-index
29
Scimago
Journal Rank
0,362
Scimago Quartile Score Immunology and Microbiology (miscellaneous) (Q3)
Medicine (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
3,6
Scopus
CIte Score Rank
General Immunology and Microbiology 26/56 (Q2)
Infectious Diseases 149/295 (Q3)
Microbiology (medical) 66/118 (Q3)
Scopus
SNIP
0,598

2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 680 EUR / 832 USD
Print + online subscription: 760 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2023 15 0 0
Oct 2023 14 2 0
Nov 2023 25 8 0
Dec 2023 107 2 1
Jan 2024 75 2 1
Feb 2024 33 0 0
Mar 2024 0 0 0