Authors:
Q. Xu

Search for other papers by Q. Xu in
Current site
Google Scholar
PubMed
Close
,
W.J. Feng China Agricultural University State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement Beijing 100193 China

Search for other papers by W.J. Feng in
Current site
Google Scholar
PubMed
Close
,
H.R. Peng China Agricultural University State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement Beijing 100193 China

Search for other papers by H.R. Peng in
Current site
Google Scholar
PubMed
Close
,
Z.F. Ni China Agricultural University State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement Beijing 100193 China

Search for other papers by Z.F. Ni in
Current site
Google Scholar
PubMed
Close
, and
Q.X. Sun China Agricultural University State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement Beijing 100193 China

Search for other papers by Q.X. Sun in
Current site
Google Scholar
PubMed
Close
Restricted access

Members of WRKY gene family encode transcription factors involved in plant developmental processes and response to biotic and abiotic stresses. In order to understand the function of the TaWRKY71 gene, a homologue gene was isolated and characterised in wheat (Triticum aestivum L.) genotype TAM107. Tissue-specific gene expression profiles indicated that TaWRKY71 was constitutively expressed in roots, stems, leaves, stamen and pistil. The relative expression of TaWRKY71 was elucidated under ABA treatment and other abiotic stresses. In agreement with this, several putative cis-acting elements involved in ABA-response, drought-inducibility, low-temperature and heat response were detected in the promoter region of TaWRKY71. The function of TaWRKY71 was further determined by transforming Arabidopsis thaliana. Transgenic plants over-expressing TaWRKY71 displayed enhanced seed germination under ABA treatment and were tolerant to salt and drought stresses. These results indicate that TaWRKY71 gene might play important roles in seed germination and abiotic stress response.

Supplementary Materials

    • Supplementary Material
  • Collapse
  • Expand

 

 

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

 

 

For subscription options, please visit the website of Springer Nature.

Cereal Research Communications
Language English
Size A4
Year of
Foundation
1973
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3720 (Print)
ISSN 1788-9170 (Online)