The aim of this study was to determine the effect of selected factors on rye (Secale cereale L.) haploid embryo production by the wide crossing method. The study was performed on fifteen winter rye genotypes. This is the first time for rye when besides the genotype, on the enlargement of ovaries and haploid embryo production, such factors as: type of auxin analogues 2,4-dichlorophenoxyacetic acid (2,4-D), 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 4-amino-3,5,6-trichloropyridine-2-carboxylic acid (picloram), and the time between florets emasculation and pollination were investigated. All factors had a significant impact on rye ovary enlargement, however the haploid embryo formation depended only on rye genotype, not on kind of auxin and days between emasculation to pollination. In total, twenty one haploid embryos were formed by six genotypes of fifteen tested. On average, 13.86% (after 2,4-D treatment) to 20.05% (after dicamba treatment) enlarged ovaries per emasculated florets were obtained. Most of the ovaries enlarged when florets were pollinated 4 and 6 days after emasculation. Most of the haploid embryos formed when florets were pollinated 6 days after emasculation. The obtained haploid embryos did not germinate.
Altpeter, F., Korzun, V. 2007. Rye. In: Pua, E.C., Davey, M.R. (eds) Biotechnology in Agriculture and Forestry, Transgenic Crops IV, vol. 59 Springer-Verlag, Berlin Heidelberg, pp. 107–117.
Altenhofer, P., Oertel, C., Matzk, F. 1997. Chromosome elimination in wide crosses of Poaceae. Current topics in plant cytogenetics related to plant improvement. International Symposium held at Tulln, Austria, February 21–22, pp. 310–317.
Deimling, S., Flehinghaus-Roux, T., Rober, F., Schechert, A., Roux, S.R., Geiger, H.H. 1994. Doubled haploid production-now reproducible in rye. In: Abstracts VIIIth International Congress of Plant Tissue and Cell Culture, Firenze, June 12–17, p. 95.
Deimling, S., Flehinghaus-Roux, T. 1997. Haploidy in rye. In: Jain, M.S., Sopory, S.K., Veilleux, R.E. (eds) In Vitro Haploid Production in Higher Plants. Kluwer Academic Publishers, Dordrecht, pp. 181–204.
Flehinghaus, T., Deimling, S., Geiger, H.H. 1991. Methodical improvements in rye anther culture. Plant Cell Rep. 10:397–400.
Flehinghaus-Roux, T., Deimling, S., Geiger, H.H. 1995. Anther culture ability in Secale cereale L. Plant Breed. 114:259–261.
Forster, B.P., Heberle-Bors, E., Kasha, K.J., Touraev, A. 2007. The resurgence of haploids in higher plants. Trends Plant Sci. 12:368–375.
Guo, Y.D., Pulli, S. 2000. Isolated microspore culture and plant regeneration in rye (Secale cereale L.). Plant Cell Rep. 19:875–880.
Hoagland, D.R., Arnon, D.I. 1938. A water culture method for growing plants without soil. Circ. Univ. Calif., Agric. Exp. Stn., No. 347.
Hörlein, A.J. 1991. Metodische Untersuchungen zur Antherenkultur bei Roggen. Metodische Untersuchungen zur Antherenkultur bei Roggen. Dissertation zur Erlagung des Grades eines Doktors der Agrarwissenschaften, Universität Hohenheim, Stuttgart.
Hromada-Judycka, A., Bolibok-Bragoszewska, H., Rakoczy-Trojanowska, M. 2010. Genetically directed differential subtraction chain products related to in vitro response of immature embryos of rye (Secale cereale L.): isolation, characterization, and expression analysis Plant Cell Tiss. Org. Cult. 100:131–138.
Immonen, S. 1999. Androgenetic green plants from winter rye, Secale cereale L., of diverse origin. Plant Breeding 118:319–322.
Immonen, S., Anttila, H. 1996. Success in anther culture of tye. Proc. EUCARPIA Int. Symp. Rye Breeding & Genetics. Vortr. Pflanzenziichtg. 35:237–244.
Immonen, S., Anttila, H. 1999. Cold pretreatment to enhance green plant regeneration from rye anther culture. Plant Cell Tiss. Org. Cult. 57:121–127.
Immonen, S., Anttila, H. 2000. Media composition and anther plating for production of androgenetic green plants from cultivated rye (Secale cereale L.). J. Plant Physiol. 156:204–210.
Karimi-Ashtiyani, R., Ishii, T., Niessen, M., Stein, N., Heckmann, S., Gurushidze, M. 2015. Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc. Natl. Acad. Sci. U.S.A. 112:11211–11216.
Laurie, D.A., O’Donoughue, LS., Bennett, M.D. 1990. Wheat × maize and other wide sexual hybrids: their potential for genetic manipulation and crop improvement. In: Gustafson, J.P. (ed.), Genetic manipulation in plant improvement II, Plenum Press, New York, pp. 95–126.
Ma, R., Guo, Y., Pulli, S. 2004. Comparison of anther and microspore culture in the embryogenesis and regeneration of rye. Plant Cell Tiss. Org. Cult. 76:147–157.
Mikolajczyk, S., Broda, Z., Weight, D. 2012. The effect of cold temperature stress on the viability of rye (Secale cereale L.) microspores. J. Biotech. 93(2):139–142.
Noga A. , Skrzypek, E., Warchol, M., Czyczylo-Mysza, I., Dziurka, K., Marcinska, I., Juzon, K., Warzecha, T., Sutkowska, A., Nita, Z., Werwinska, K. 2016. Conversion of oat (Avena sativa L.) haploid embryos into plants in relation to embryo developmental stage and regeneration media. In Vitro Cellular & Developmental Biology –Plant 52:590–597.
Ponitka, A., Slusarkiewicz-Jarzina, A. 2004. Cleared-ovule technique used for rapid access to elary embryo development in Secale cereale x Zea mays crosses. Acta Biol. Cracov. Series Botanica 46:133–137.
Rakoczy-Trojanowska, M., Smiech, M., Malepszy, S. 1997. The influence of genotype and medium on rye (Secale cereale L.) anther culture. Plant Cell Tiss. Org. Cult. 48:15–21.
Rubtsova, M., Gnad, H., Melzer, M., Weyen, J., Gils, M. 2013. The auxins centrophenoxine and 2,4-D differ in their effects on non-directly induced chromosome doubling in anther culture of wheat (T. aestivum L.) Plant Biotechnol. Rep. 7:247–255.
Rybczynski, J.J. 1990. Plant tissue culture of Secale: A review. Euphytica 46:57–70.
Sserumaga, J.P., Oikeh, S.O., Mugo, S., Asea, G., Otim, M., Beyene, Y., Abalo, G., Kikafunda, J. 2015. Genotype by environment interactions and agronomic performance of doubled haploids testcross maize (Zea mays L.) hybrids. Euphytica 207:353–365.
Tenhola-Roininen, T., Immonen, S., Tanhuanpää, P. 2006. Rye doubled haploids as a research and breeding tool –a practical point of view. Plant Breed. 125:584–590.
Targonska, M., Hromada-Judycka, A., Bolibok-Bragoszewska, H., Rakoczy-Trojanowska, M. 2013. The specificity and genetic background of the rye (Secale cereale L.) tissue culture response. Plant Cell. Rep. 32(1):1–9.
Thomas, E., Wenzel, G. 1975. Embryogenesis from microspores of rye. Naturwissenschaften 62:40–41.
Wenzel, G., Thomas, E. 1974. Observations on the growth in culture of anthers of Secale cereale. Z. Pflanzenzüchtg. 72:89–94.
Wenzel, G., Hoffmann, E., Thomas, E. 1977. Increased induction and chromosome doubling of androgenetic haploid rye. Theor. Appl. Genet. 5:81–86.
Zenkteler, M., Misiura, E. 1974. Induction of androgenic embryos from cultured anthers of Hordeum, Secale, and Festuca. Biochem. Physiol. Pflanzen. 165:337–340.
Zenkteler, M., Nitzsche, W. 1984. Wide hybridization experiment in cereals. Theor. Appl. Genet. 68:311–315.
Zhuang, J.J., Xu, J. 1983. Increasing differentiation frequencies in wheat pollen callus. In: Hu, H., Vega, M.R. (eds) Cell and Tissue Culture Techniques for Cereal Crop Improvement, Science Press, Beijing, p. 431.