Authors:
Peer Schmidt Faculty of Sciences, Inorganic Solids and Materials, Lausitz University of Applied Science, P.O. Box 101548, 01958, Senftenberg, Germany

Search for other papers by Peer Schmidt in
Current site
Google Scholar
PubMed
Close
,
Michael Schöneich Department of Inorganic Chemistry, Technische Universität Dresden, Helmholtzstrasse 10, 01069, Dresden, Germany

Search for other papers by Michael Schöneich in
Current site
Google Scholar
PubMed
Close
,
Melanie Bawohl Institute for Inorganic and Analytical Chemistry, WWU Münster, Corrensstraße 30, 48149, Münster, Germany

Search for other papers by Melanie Bawohl in
Current site
Google Scholar
PubMed
Close
,
Tom Nilges Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85737, Garching, Germany

Search for other papers by Tom Nilges in
Current site
Google Scholar
PubMed
Close
, and
Richard Weihrich Institute for Inorganic Chemistry, Universität Regensburg, Universitätsstr. 31, 93040, Regensburg, Germany

Search for other papers by Richard Weihrich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Several methods are established in thermal analysis to investigate phase formation, phase transition, and decomposition reactions. The analysis of phase equilibria with volatile components is particularly feasible by using standard method of thermogravimetry. Hardly any investigations of phase formation reactions are possible to realize if one of the components is lost by vaporization. By using the “High-Temperature Gas-Balance” (HTGB), the vapor phase is enclosed in a silica ampoule and thus forms an equilibrium gas phase in permanent contact with the solid phase. The measurement signal Δmmeas is caused by change of the leverage of the horizontal balance support during evaporation and condensation. The application of the HTGB allows the analysis of solid–gas equilibria in the working range from 0.01 till 15 bar at temperatures up to 1,100 °C. The first comparison of evaporation reactions determined by standard thermogravimetric analyses and by measurements using the HTGB is given for the inorganic systems: P, As, SeO2, PtI2, and Hg/I.

  • 1.

    Brown, ME. 1998 Handbook of thermal analysis and calorimetry 3 Elsevier Science Ltd Amsterdam.

  • 2.

    Haines, P. 2002 Principles of thermal analysis and calorimetry Royal Society of Chemistry London .

  • 3.

    Amankwah, RK, Pickles, CA. 2009. Thermodynamic, thermogravimetric and permittivity studies of hausmannite (Mn3O4) in air. J Thermal Anal Calorim. 98:849853 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Sergent, N, Gelin, P, Perier-Camby, L, Praliaud, H, Thomas, G. 2003. Study of the interactions between carbon monoxide and high specific surface area tin dioxide. Thermogravimetric analysis and FTIR spectroscopy. J Thermal Anal Calorim. 72:11171126 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Hackert, A, Plies, V. 1998. Determination of temperature dependent partial pressures in closed systems—a new method. Z Anorg Allg Chem. 624:7480 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Martienssen, W, Warlimont, H. 2005 Springer handbook of condensed matter and materials data Springer Berlin .

  • 7.

    Knacke, O, Kubaschevski, O, Hesselmann, K. 1991 Thermochemical properties of inorganic substances 2 Springer Berlin.

  • 8.

    Barin, I. 1989 Thermochemical data of pure substances VCH Verlagsgesellschaft Weinheim.

  • 9.

    Binnewies, M, Milke, E. 1999 Thermochemical data of elements Wiley-VCH Weinheim.

  • 10.

    Riesen, R. 1998. Adjustment of heating rate for maximum resolution in TG and TMA. J Thermal Anal Calorim. 53:365374 .

  • 11.

    Krabbes, G, Bieger, W, Sommer, KH, Söhnel, T, Steiner, U. 2008 GMIN Version 5.0b, package TRAGMIN for calculation of thermodynamic equilibrium IFW Dresden, TU Dresden Dresden.

    • Search Google Scholar
    • Export Citation
  • 12.

    Schmidt P . Thermodynamic analysis of existence ranges of solid phases- principles of syntheses planning in inorganic solid state chemistry. Habilitation, TU Dresden; 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549.

    • Search Google Scholar
    • Export Citation
  • 13.

    Schmidt, P, Oppermann, H, Feja, St. 2001. Thermal decomposition of TeSeO4 and Te3SeO8. Z Anorg Allg Chem. 627:19581965 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Schäfer, H, Trenkel, B. 1972. The iodine catalyzed sublimation of red phosphorus. Z Anorg Allg Chem. 391:1118 .

  • 15.

    Lange, S, Schmidt, P, Nilges, T. 2007. Au3Snp7@black phosphorus: an easy access to black phosphorus. Inorg Chem. 46:40284035 .

  • 16.

    Roth, WL, Dewitt, T, Smith, AJ. 1947. Polymorphism of red phosphorus. J Am Chem Soc. 69 11 28812885 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 10 0 0
May 2024 14 0 0
Jun 2024 28 0 0
Jul 2024 19 0 0
Aug 2024 23 0 0
Sep 2024 15 0 0
Oct 2024 31 0 0