Authors:
J. T. Kundrát University of Debrecen, Debrecen, Egyetem sq. 1, H-4032, Hungary

Search for other papers by J. T. Kundrát in
Current site
Google Scholar
PubMed
Close
,
Zs. Balogh University of Debrecen, Debrecen, Egyetem sq. 1, H-4032, Hungary

Search for other papers by Zs. Balogh in
Current site
Google Scholar
PubMed
Close
,
S. Harangi University of Debrecen, Debrecen, Egyetem sq. 1, H-4032, Hungary

Search for other papers by S. Harangi in
Current site
Google Scholar
PubMed
Close
,
B. Tóthmérész University of Debrecen, Debrecen, Egyetem sq. 1, H-4032, Hungary

Search for other papers by B. Tóthmérész in
Current site
Google Scholar
PubMed
Close
, and
E. Simon MTA-DE Biodiversity and Ecosystem Services Research Group, Debrecen, Egyetem sq. 1, H-4032, Hungary

Search for other papers by E. Simon in
Current site
Google Scholar
PubMed
Close
Restricted access

The contamination level of oxbows depends on both natural and anthropogenic effects. The aim of our study was to identify those abiotic and biotic factors that determine the contamination level of oxbows. The effect of anthropogenic activities, seasonality, and vegetation types was studied on the contamination level of surface water of oxbows. The following chemical variables were measured: suspended solid, ammonium, nitrate, chlorophyll-a, Al, Ba, Fe, Mn, Pb, Sr and Zn from eight oxbows from 2013 summer to 2014 autumn in the Upper Tisza region in Eastern Hungary. Three of the studied oxbows were protected, four oxbows were used for fishing and one oxbow was contaminated with wastewater. Our findings revealed that anthropogenic activities had remarkable effect on the contamination level of oxbows. Seasonality also influenced the contamination level, except the concentration of suspended solid, chlorophyll-a and manganese. Significant differences were found among vegetation types for the concentration of suspended solids, aluminium, iron, manganese and lead. The high level of iron concentration was not explained by the anthropogenic activities, suggesting that the quality of oxbows depends on both natural and anthropogenic effects.

  • Balogh, Zs., Harangi, S., Kundrát, J.T., Gyulai, I., Tóthmérész, B. and Simon, E. 2016. Effects of anthropogenic activities on the elemental concentration in surface sediment of oxbows. Water Air Soil Pollut. 227:1321.

    • Search Google Scholar
    • Export Citation
  • Balogh, Zs., Harangi, S., Gyulai, I., Braun, M., Hubay, K., Tóthmérész, B. and Simon, E. 2017. Exploring river pollution based on sediment analysis in the Upper Tisza region (Hungary). Environ. Sci. Pollut. R. 24:48514859.

    • Search Google Scholar
    • Export Citation
  • Boz, B. and Gumiero, B. 2016. Nitrogen removal in an afforested riparian zone: the contribution of denitrification processes. Hydrobiologia 774:167182.

    • Search Google Scholar
    • Export Citation
  • Delpha, I., Jung, A.V., Baures, E., Clement, M. and Thomas, O. 2009. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 35:12251233.

    • Search Google Scholar
    • Export Citation
  • Dhote, S. and Dixit, S. 2009. Water quality improvement through macrophytes –a review. Environ. Monit. Assess. 152:149153.

  • EPA, 1986. Quality Criteria for Water, "Gold Book". https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table.

  • Garizi, A.Z., Sheikh, V. and Sadoddin, A. 2011. Assessment of seasonal variations of chemical characteristics in surface water using multivariate statistical methods. Int. J. Environ. Sci. Tech. 8:581592.

    • Search Google Scholar
    • Export Citation
  • Gastwirth, J.L., Gel, Y.R. and Miao, W. 2009. The Impact of Levene’s test of equality of variances on statistical theory and practice. Stat. Sci. 24:343360.

    • Search Google Scholar
    • Export Citation
  • Hernández-Crespo, C., Oliver, N., Bixquert, J., Gargallo, S. and Martínez, M. 2016. Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate. Hydrobiologia 774:183192.

    • Search Google Scholar
    • Export Citation
  • ISO 5667-4:1987. Water quality. Sampling. Part 4: Guidance on sampling from lakes, natural and man-made. International Organization for Standardization, Vernier, Geneva, Switzerland.

  • Juwarker, A.S., Oke, B., Juwarkar, A. and Patnaik, S.M. 1995. Domestic wastewater treatment through constructed wetland in India. Water Sci. Technol. 32:291294.

    • Search Google Scholar
    • Export Citation
  • Landau, S. and Everitt, B.S. 2004. A Handbook of Statistical Analyses Using SPSS. Chapman & Hall/CRC Press, Boca Raton.

  • Lee, P.F. and McNaughton, K.A. 2004. Macrophyte induced microchemical changes in the water column of a northern Boreal Lake. Hydrobiologia 522:207220.

    • Search Google Scholar
    • Export Citation
  • Lepom, P., Brown, B., Hanke, G., Loos, R., Quevauviller, P. and Wollgast, J. 2009. Needs for reliable analytical methods for monitoring chemical pollutants in surface water under the European Water Framework Directive. J. Chromatogr. A 1216:302315.

    • Search Google Scholar
    • Export Citation
  • Lešcešen, I., Pantelic, M., Dolinaj, D., Stojanovic, V. and Miloševic, D. 2015. Statistical analysis of water quality parameters of the Drina River (West Serbia), 2004–11. Pol. J. Environ. Stud. 24:555561.

    • Search Google Scholar
    • Export Citation
  • Lukács, B.A., Dévai, Gy. and Tóthmérész, B. 2009. Aquatic macrophytes as bioindicators of water chemistry in nutrient rich backwaters along the Upper-Tisza river (in Hungary). Phytocoenologia 39:287293.

    • Search Google Scholar
    • Export Citation
  • Lukács, B.A., Dévai, Gy. and Tóthmérész, B. 2011. Small scale macrophyte-environment relationship in an oxbow-lake of the Upper-Tisza valley (Hungary). Community Ecol. 12:259263.

    • Search Google Scholar
    • Export Citation
  • Maine, M.A., Noemi, L.S., Panigatti, M.C., Pizarro, M.J. and Emilani, F. 1999. Relationships between water chemistry and macrophyte chemistry in lotic and lentic environments. Arch. Hydrobiol. 145:129145.

    • Search Google Scholar
    • Export Citation
  • Németh, J. 1998. A biológiai vízminosítés módszerei. Methods for water quality management (in Hungarian). Környezetgazdálkodási Intézet TOI Környezetvédelmi Tájékoztató Szolgálat, Budapest.

    • Search Google Scholar
    • Export Citation
  • Nguyen, H.L., Braun, M., Szalóki, I., Baeyens, W., Van Grieken , R. and Leemarkers, M. 2009. Tracing the metal pollution history of the Tisza River through the analysis of a sediment depth profile. Water Air Soil Poll. 200:119132.

    • Search Google Scholar
    • Export Citation
  • Ouyang, Y., Nkedi-Kizza, P., Wu, Q.T., Shinde, D. and Huang, C.H. 2006. Assessment of seasonal variations in surface water quality. Water Res. 40:38003810.

    • Search Google Scholar
    • Export Citation
  • Pappalardo, S.E., Otto, S., Gasparini, V., Zanin, G. and Borin, M. 2016. Mitigation of herbicide runoff as an ecosystem service from a constructed surface flow wetland. Hydrobiologia 774:193202.

    • Search Google Scholar
    • Export Citation
  • Pejman, A.H., Bidhendi, G.R.N., Karbassi, A.R., Mehrdadi, N. and Bidhendi, M.E. 2009. Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. Int. J. Environ. Sci. Tech. 6: 467476.

    • Search Google Scholar
    • Export Citation
  • Rai, U.N., Sinka, S., Tripathi, R.D. and Chandra, P. 1995. Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol. Eng. 5:512.

    • Search Google Scholar
    • Export Citation
  • Samecka-Cymerman, A. and Kempers, A.J. 2001. Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Sci. Total Environ. 281:8798.

    • Search Google Scholar
    • Export Citation
  • Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., von Gunten , U. and Wehrli, B. 2010. Global water pollution and human health. Annu. Rev. Environ. Resour. 35:109136.

    • Search Google Scholar
    • Export Citation
  • Sendzimir, J., Flachner, Zs., Pahl-Wostl, C. and Knieper, C. 2010. Stalled regime transition in the upper Tisza River Basin: the dynamics of linked action situations. Environ. Sci. Policy 13:604619.

    • Search Google Scholar
    • Export Citation
  • Shrestha, S. and Kazama, F. 2007. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ. Model. Softw. 22:464475.

    • Search Google Scholar
    • Export Citation
  • Simon, E., Kis, O., Jakab, T., Kolozsvári, I., Málnás, K., Harangi, S., Baranyai, E., Miskolczi, M., Tóthmérész, B. and Dévai, Gy. 2017. Assessment of contamination based on trace element concentration of dragonfly larvae in the Upper Tisza Region. Ecotox. Environ. Safe. 136:5561.

    • Search Google Scholar
    • Export Citation
  • Szabó, K., Kiss, K.T., Taba, Gy. and Ács, É. 2005. Epiphytic diatoms of the Tisza River, Kisköre Reservoir and some oxbows of the Tisza River after the cyanide and heavy metal pollution in 2000. Acta Bot. Croat. 64:146.

    • Search Google Scholar
    • Export Citation
  • The Plant List (2013). Version 1.1. Published on the Internet; http://www.theplantlist.org/ (accessed December 20, 2017).

  • Varga, K., Dévai, Gy. and Tóthmérész, B. 2013. Land use history of a floodplain area during the last 200 years in the Upper-Tisza region (Hungary). Reg. Environ. Change 13:11091118.

    • Search Google Scholar
    • Export Citation
  • Varol, M. and Sen, B. 2009. Assessment of surface water quality using multivariate statistical techniques: a case study of Behrimaz Stream, Turkey. Environ. Monit. Assess. 159:543553.

    • Search Google Scholar
    • Export Citation
  • Viaroli, P., Bartoli, M. and Vymazal, J. 2016. Preface: Wetlands biodiversity and processes—tools for conservation and management. Hydrobiologia 774:15.

    • Search Google Scholar
    • Export Citation
  • Vitt, D.H., Bayley, S.E. and Jin, T.L. 1995. Seasonal variation in water chemistry over a bog-rich fen gradient in continental western Canada. Can. J. Fish. Aquat. Sci. 52:587606.

    • Search Google Scholar
    • Export Citation
  • Walters, K.M. and Babbar-Sebens, M. 2016. Using climate change scenarios to evaluate future effectiveness of potential wetlands in mitigating high flows in a Midwestern U.S. watershed. Ecol. Eng. 89:80102.

    • Search Google Scholar
    • Export Citation
  • Watson, E. B., Szura, K., Wigand, C., Raposa, K. B., Blount, K. and Cencer, M. 2016. Sea level rise, drought and the decline of Spartina patens in New England marshes. Biol. Conserv. 196:173181.

    • Search Google Scholar
    • Export Citation
  • Werners, S. E., Flachner, Zs., Matczak, P., Falaleeva, M. and Leemanse, R. 2009. Exploring earth system governance: A case study of floodplain management along the Tisza river in Hungary. Global Environ. Change 19:503511.

    • Search Google Scholar
    • Export Citation
  • Wood, P.J. and Armitage, P.D. 1997. Biological effects of fine sediment in the lotic environment. Environ. Manage. 21:203217.

  • Zambrano, L., Scheffer, M. and Martínez-Ramos, M. 2001. Catastrophic response of lakes to benthivorous fish introduction. Oikos 94:344350.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Community Ecology
Language English
Size A4
Year of
Foundation
2000
Volumes
per Year
1
Issues
per Year
3
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)