Highly active immobilized hydrogenation catalytic systems were used in the H-Cube™ hydrogenation reactor. “In situ” produced [Rh(COD)((S)-MonoPhos)2]BF4 complex was immobilized on commercially available Al2O3 and mesoporous Al2O3 by means of phosphotungstic acid (PTA), respectively. The optimum reaction conditions were determined and studied at different temperature, pressure, and flow rate values. Furthermore, the effect of the substrate concentration, microstructure of the support, and the stability of the complex were investigated. A continuous-flow reaction system using a stationary-phase catalyst for the asymmetric hydrogenation of methyl acetamidoacrylate was developed and run continuously for 12 h with >99% conversion and 96–97% enantioselectivity.
1. (a) van der Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.; de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2000, 122, 11539–11540.
(b)van der Berg, M.; Minnaard, A. J.; Haak, R. M.; Leeman, M.; Schudde, E. P.; Meetsma, A.; Feringa, B. L.; de Vries, A. H. M.; Maljaars, C. E. P.; Willans, C. E.; Hyett, D.; Boogers, J. A. F.; Henderickx, H. J. W.; de Vries, J. G. Adv. Synt. Catal. 2003, 345, 308–323.
2. R. L. Augustine S. K. Tanielyan N. Mahata Y. Gao A. Zsigmond H. Yang 2003 Appl. Catal. A 256 69–76.
3. C. Simons U. Hannefeld I. W. C. E. Arends R. A. Sheldon T. Maschmeyer 2004 Chem. Eur. J 10 5829–5835.
4. (a) Simons, C.; Hannefeld, U.; Arends, I. W. C. E.; Minnaard, A. J.; Maschmeyer, T.; Sheldon, R. A. Chem. Commun. J. 2004, 2830–2831.
(b) Simons, C.; Hannefeld, U.; Arends, I. W. C. E.; Maschmeyer, T.; Sheldon, R. A. J. Catal. 2006, 239, 212–219.
5. For selected reviews on continuous flow reactors and processes, see (a) Kirsching, A.; Solodenko, W.; Mennecke, K. Chem. Eur. J. 2006, 12, 5972–5990.
(b) Wiles, C.; Watts, P. Eur. J. Org. Chem. 2008, 1655–1671.
(c) Uozumi, Y.; Yamada, Y. M. A.; Beppu, T.; Fukuyama, N.; Ueno, M.; Kitamori, T. J. Am. Chem. Soc. 2006, 128, 15994–15995.
(d) Smith, C. D.; Baxendale, I. R.; Lanners, S.; Hayward, J. J.; Smith, S. C.; Ley, S. V. Org. Biomol. Chem. 2007, 5, 1559–1561.
6. (a) Kruk, M.; Jaroniec, M.; Joo, S. H.; Ryoo, R. J. Phys. Chem. B. 2003, 107, 2205–2213.
(b) Bao, X. Y.; Li, X.; Zhao, X. S. J. Phys. Chem. B. 2006, 110, 2656–2661.
7. (a) Liu, G. H.; Yao, M.; Zhang, F.; Gao, Y.; Li, H. X. Chem. Commun. 2008, 347–349.
(b) Liu, G. H.; Yao, M.; Wang, G. Y.; Liu, M. M.; Zhang, F.; Li, H. X. Adv. Synth. Catal. 2008, 350, 1464–1468.
8. A. D. Newman A. F. Lee K. Wilson N. A. Young 2005 Catal. Lett 102 45–50.
9. Z. Luan 1999 Chem. Mater 11 1621–1626.
10. L. Shi X. Wang C. A. Sandoval Z. Wang H. Li J. Wu L. Yu K. Ding 2009 Chem. Eur. J 15 9855–9867.
11. R. Hulst N. K. de Vries B. L. Feringa 1994 Tetrahedron Asymmetry 5 699–708.
12. T. G. Schenk J. M. Downes C. R. C. Milne P. B. MacKenzie T. G. Boucher J. Whelan B. Bosnich 1985 Inorg. Chem 24 2334.
13. S. Gladiali L. Pinna 1991 Tetrahedron Asymmetry 2 623–632.
14. S. Brunauer P. H. Emmett E. Teller 1938 J. Am. Chem. Soc 60 309–319.
15. P. Barrett L. G. Joyner P. P. Halenda 1951 J. Am. Chem. Soc 73 373–380.
16. http://thalesnano.com/Hcube.
17. Z. Shan J. C. Jansen W. Zhou T. Maschmeyer 2003 Appl. Catal. A 254 339–343.