A methodology that may be applied to help in the choice of a continuous reactor is proposed. In this methodology, the chemistry is first described through the use of eight simple criteria (rate, thermicity, deactivation, solubility, conversion, selectivity, viscosity, and catalyst). Then, each reactor type is also analyzed from their capability to answer each of these criteria. A final score is presented using “spider diagrams.” Lower surfaces indicate the best reactor choice. The methodology is exemplified with a model substrate nitrobenzene and a target pharmaceutical intermediate, N-methyl-4-nitrobenzenemethanesulphonamide, and for three different continuous reactors, i.e., stirred tank, fixed bed, and an advanced microstructured reactor. Comparison with the traditional batch reactor is also provided.
1. Roberge, D. M. Org. Proc. Res. Dev. 2004, 8, 1049–1053;
(b)Roberge, D. M.; Ducry, L.; Bieler, N.; Ctretton, P.; Zimmermann, B. Chem. Eng. Technol. 2005, 28, 318–323.
2. FE Valera M Quaranta A Moran J Blacker A Armstrong JT Cabral DG Blackmond 2010 Angew. Chem. Int. Ed. 49 2478 2485.
3. V Hessel A Renken J Schouten J-I Yoshida 2009 In Micro Process Engineering: A Comprehensive Handbook Wiley-VCH Weinheim.
4. K Plumb 2005 Chem. Eng. Res. Des. 83 730 738.
5. Hessel, V.; Angeli, P.; Gavriilidis, A.; Loewe, H. Ind. Eng. Chem. Res. 2005, 44, 9750–9769;
(b)Renken, A.; Kiwi-Minsker, L. Adv. Catal. 2010, 53, 47–122.
6. de Bellefon, C. In Micro Process Engineering: A Comprehensive Handbook; Hessel, V.; Renken, A.; Schouten, J.; Yoshida, J.-I., Eds.; Wiley-VCH: Weinheim, 2009; Vol. 2.
7. CO Kappe 2008 Chem. Soc. Rev. 37 1127 1139.
8. N Kockmann DM Roberge 2009 Chem. Eng. Tech. 32 1682 1694.
9. T Van Gerven A Stankiewicz 2009 Ind. Eng. Chem. Res. 48 2465 2474.
10. (a) Mills, P. L.; Chaudhari, R. V. Catal. Today 1997, 37, 367–404;
(b)Ramachandran, P. A.; Chaudary, R. V. In Three Phase Catalytic Reactors; Gordon & Breach: New York, 1983.
11. RL Hartman JP McMullen KF Jensen 2011 Angew. Chem. Int. Ed. 50 7502 7519.
12. (a) Benaskar, F.; Ben-Abdelmoumen, A.; Patil, N. G.; Rebrov, E. V.; Meuldijk, J.; Hulshof, L. A.; Hessel, V.; Krtschil U.; Schouten, J. C. J. Flow Chem. 2011, 2, 74–89;
(b)Dencic, I.; Meuldijk, J.; Croon, M.; Hessel, V. J. Flow Chem. 2011, 1, 13–23.
13. JE Macor DH Blank RJ Post K Ryan 1992 Tet. Letters 33 8011.
14. EJ Corey F-Y Zhang 1999 Angew. Chemie Int. Ed. 38 1931.
15. Y Honda S Katayama M Kojima T Suzuki N Kishibata K Izawa 2004 Org. Biomol. Chem. 2 2061 2070.
16. Al-Farhan, E.; Deininger, D. D.; McGhie, S. S.; O'Callaghan, J.; Robertson, M. S.; Rodgers, K.; Rout, S. J.; Singh, H.; Tung, R. D. WO9948885, 1999, Glaxo Group,.
17. BK Vankayala P Löb V Hessel G Menges C Hofmann D Metzke U Krtschil H-J Kost 2007 Int. J. Chem. Reactor Eng. 5 A91.
18. (a) Stavárek, P.; de Bellefon, C. Proceedings of the ECCE7 & CHISA2010 conference, 2010, Prague, Czech Republic, n° 1665, 8 pp;
(b)Le Doan V. T. PhD thesis, University of Lyon, 2009.
19. V Meille N Pestre P Fongarland C de Bellefon 2004 Ind. Eng. Chem. Res. 43 924 927.
20. V Félis P Fouilloux C de Bellefon D Schweich 1999 Ind. Eng. Chem. Res. 38 4213 4219.
21. V Meille C de Bellefon D Schweich 2002 Ind. Eng. Chem. Res. 41 1711 1715.
22. N Frikha E Schaer J-L Houzelot 2006 Chem. Eng. J. 124 19 28.
23. Yoswathananont, N.; Nitta, K.; Nishiuchi, Y.; Sato M. Chem. Commun. 2005, 40–42.
24. I Bergault P Fouilloux C Joly-Vuillemin HJ Delmas 1998 Catal. 175 328 337.
25. V Felis C de Bellefon P Fouilloux D Schweich 1999 Applied Catal. B: Environmental 20 91 100.
26. HK Noh JS Lee Y Kim G Hwang JH Chang H Shin DH Nam KH Lee 2004 Org. Proc. Res. Dev. 8 781 787.
27. GF Froment 2001 Applied Catalysis A: General 212 117 128.
28. Actualité Chimique, Avril 2000.
29. L Zhao 2006 J. Mol. Catal. A: Chemicals 246 140 145.
30. P Gallezot N Nicolaus G Flèche P Fuertes AJ Perrard 1998 Catal. 180 51 55.
31. V Meille 2006 Applied Catal. A: General 315 1 17.
32. A Cybulski JA Moulijn 1998 In Structured Catalysts and Reactors Dekker New York.
33. MW Losey MA Schmidt KF Jensen 2001 Ind. Eng. Chem. Res. 40 2555 2562.
34. (a) Dudukovic, M. P.; Larachi, F.; Mills, P. L. Cat. Rev. Sci. Eng. 2002, 44, 123–246;
(b) Dudukovic, M. P.; Larachi, F.; Mills, P. L. Chem. Eng. Sci. 1999, 54, 1975–1995.
35. Trambouze, P.; Euzen, J.-P.; Bononno, R. In Chemical reactors: from design to operation. Paris: Technip, 2004.
36. (a) Charpentier, J. C. In Two-Phase Flow and Heat Transfer; Kakac S., Veziroglu, T. N., Eds.; Hemisphere Publ. Corp.: Washington, DC, 1978, pp. 869–910;
(b)Charpentier J.C. Adv. Chem. Eng. 1981, 11, 1–133.
37. K Kin Yeong A Gavriilidis R Zapf V Hessel 2004 Chem. Eng. Sci. 59 3491 3494.
38. M Meyberg F Roessler 2005 Ind. Eng. Chem. Res. 44 9705 9711.
39. Yagi, H.; Yoshida, F. Ind. Eng. Chem., Process Des. Dev. 1975, 14, 488–493.
40. M Bouaifi G Hebrard D Bastoul M Roustan 2001 Chem. Eng. Proc. 40 97 111.
41. A Lara Màrquez G Wild N Midoux 1994 Chem. Eng. Proc. 33 247 260.
42. B Buisson S Donegan D Wray A Parracho J Gamble P Caze J Jorda C Guermeur 2009 Chimica Oggi–Chem Today 27 12 16.
43. RV Jones L Godorhazy N Varga D Szalay L Urge FJ Darvas 2006 Comb. Chem. 8 110 116.