The asymmetric heterogeneous catalytic cascade reaction of ethyl 2-nitro-3-methylphenylpyruvate has been investigated over platinum modified by cinchonidine in continuous-flow system using a fixed-bed reactor. The high selectivities and enantioselectivities of the (R)-3-hydroxy-3,4-dihydro-8-methylquinolin-2(1H)-one obtained in previous studies in batch reactor were not reached. The catalyst was in situ prehydrogenated and premodified with cinchonidine, and the reaction conditions optimized for batch reactor were changed in order to increase the yield and enantioselectivity of the desired product under flow conditions. Results obtained in the flow apparatus contributed to the understanding of the reaction pathway through which the quinolone is formed. It was shown that, at low conversions, the intermediate aminohydroxyester desorbs preferentially and is further transformed by readsorption and cyclization to the quinolone derivative after complete disappearance of the 2-nitrophenylpyruvate. However, at high conversion, the formation of the quinolone may also occur instantaneously on the Pt surface following the two competitive reduction steps. The ratio of the product formed through these two pathways is determined by the reaction conditions and the system used.
Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300–2318;
Sahoo, H. R.; Kralj, J. G.; Jensen, K. F. Angew. Chem., Int. Ed. 2007, 46, 5704–5708;
Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Angew. Chem., Int. Ed. 2011, 50, 7502–7519;
Noèl, T. Buchwald, S. L. Chem. Soc. Rev. 2011, 40, 5010–5029;
Wegner, J.; Ceylan, S.; Kirschning, A. Adv. Synth. Catal. 2012, 354, 17–57;
Baxendale, I. R. J. Chem. Technol. Biotechnol. 2013, 88, 519–552;
Watts, P.; Haswell, S. J. Drug Discovery Today 2003, 8, 586–593;
Wiles, C.; Watts, P. Expert Opin. Drug Discovery 2007, 2, 1487–1503;
Baumann, M.; Baxendale, I. R.; Ley, S. V. Mol. Diversity 2011, 15, 613–630;
Malet-Sanz, L.; Susanne, F. J. Med. Chem. 2012, 55, 4062–4098;
Baraldi, P. T.; Hessel, V. Green Process Synth. 2012, 1, 149–167;
Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev. 2013, 42, 8849–8869.
Mak, X. Y.; Laurino, P.; Seeberger, P. H. Beilstein J. Org. Chem. 2009, 5, No. 19;
Burguete, M. I.; García-Verdugo, E.; Luis, S. V. Beilstein J. Org. Chem. 2011, 7, 1347–1359;
Rasheed, M.; Elmore, S. C.; Wirth, T. Asymmetric Reactions in Flow Reactors. In Catalytic Methods in Asymmetric Synthesis, Advanced Materials, Techniques, and Applications; Gruttadauria, M.; Giacalone, F., Eds.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2011; Chapter 8, pp. 345–371;
Tsubogo, T.; Ishiwata, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2013, 52, 6590–6604;
Puglisi, A; Benaglia, M.; Chiroli, V. Green Chem. 2013, 15, 1790–1813.
Handbook of Asymmetric Heterogeneous Catalysis; Ding, K.; Uozumi, Y., Eds.; Wiley-VCH: Weinheim, 2008;
Enantioselective Homogeneous Supported Catalysis; Šebesta, R., Ed.; RSC Green Chem. No. 15; RSC Publ.: Cambridge, 2012.
Corma, A.; Garcia, H. Adv. Synth. Catal. 2006, 348, 1391–1412;
Kobayashi, S.; Sugiura, M. Adv. Synth. Catal. 2006, 348, 1496–1504;
Heitbaum, M.; Glorius, F.; Escher, I. Angew. Chem., Int. Ed. 2006, 45, 4732– 4762;
Ding, K.; Wang, Z.; Wang, X.; Liang, Y.; Wang, X. Chem. Eur. J. 2006, 12, 5188–5197;
Fraile, J. M.; García. J. I.; Mayoral, J. A. Coord. Chem. Rev. 2008, 252, 624–646;
Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196–1231;
He, Y.-M.; Feng, Y.; Fan, Q.-H. Acc. Chem. Res. 2014, 47, 2894–2906;
Fernandes, A. E.; Jonas, A. M.; Riant, O. Tetrahedron 2014, 70, 1709–1731;
Studer, M.; Blaser, H.-U.; Exner, C. Adv. Synth. Catal. 2003, 345, 45–65;
Murzin, D. Yu.; Mäki-Arvela, P.; Toukoniitty, E.; Salmi, T. Catal. Rev. Sci. Eng. 2005, 47, 175–256;
Osawa, T.; Harada, T.; Takayasu, O. Curr. Org. Chem. 2006, 10, 1513–1531;
Mallat, T.; Orglmeister, E.; Baiker, A. Chem. Rev. 2007, 107, 4863–4890;
Margitfalvi, J. L.; Tálas, E. Asymmetric hydrogenation of activated ketones. In Catalysis; Spivey, J. J.; Dooley, K.M., Eds.; RSC Publ.: Cambridge, 2010; vol. 22, pp. 144–278;
Yasukawa, T.; Miyamura, H.; Kobayashi, S. Chem. Soc. Rev. 2014, 43, 1450–1461.
Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006;
Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134–7186;
Poulin, J.; Grisé-Bard, C. M.; Barriault, L. Chem. Soc. Rev. 2009, 38, 3092–3101;
Alba, A.-N.; Companyo, X.; Viciano, M.; Rios, R. Curr. Org. Chem. 2009, 13, 1432–1474;
Barluenga, J.; Rodríguez, F.; Fañanás, F. J. Chem. Asian J. 2009, 4, 1036–1048;
Chapman, C. J.; Frost, C. G. Synthesis 2007, 1–21;
Grondal, C.; Jeanty, M.; Enders, D. Nature Chem. 2010, 2, 167–178;
Clavier, H.; Pellissier, H. Adv. Synth. Catal. 2012, 354, 3347–3403;
Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314–325;
Pellissier, H. Asymmetric Domino Reactions. RSC Catalysis Series No. 10; RSC Publ.: Cambridge, 2013;
Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 2390–2431.
Choudary, B. M.; Chowdari, N. S.; Madhi, S.; Kantam, M. L. Angew. Chem., Int. Ed. 2001, 40, 4620–4623;
Choudary, B. M.; Chowdari, N. S.; Jyothi, K.; Kumar, N. S.; Kantam, M. L. Chem. Commun. 2002, 586–587;
Akagawa, K.; Umezawa, R.; Kudo, K. Beilstein J. Org. Chem. 2012, 8, 1333– 1337;
Jiang, X.; Zhu, H.; Shi, X.; Zhong, Y.; Li, Y.; Wang, R. Adv. Synth. Catal. 2013, 355, 308–314;
Deiana, L.; Ghisu, L.; Afewerki, S.; Verho, O.; Johnston, E. V.; Hedin, N.; Bacsik, Z.; Córdova, A. Adv. Synth. Catal. 2014, 356, 2485–2492;
Yadav, J.; Stanton, G. R.; Fan, X.; Robinson, J. R.; Schelter, E. J.; Walsh, P. J.; Pericas, M. A. Chem. Eur. J. 2014, 20, 7122–7127;
An, Z.; Guo, Y.; Zhao, L.; Li, Z.; He, J. ACS Catal. 2014, 4, 2566–2576.
Felföldi, K.; Szöri, K.; Bartók, M. Appl. Catal. A: Gen. 2003, 351, 457–460.
Szőllősi, Gy.; Makra, Zs.; Kovács, L.; Fülöp. F.; Bartók, M. Adv. Synth. Catal. 2013, 355, 1623–1629;
Szőllősi, Gy.; Kovács, L.; Makra, Zs. Catal. Sci. Technol. 2015, 5, 697–704.
Alza, E.; Sayalero, S.; Cambeiro, X. C.; Martín-Rapún, R.; Miranda, P. O.; Pericàs, M. A. Synlett 2011, 464–468.
Suzuki, H.; Gyoutoku, H.; Yokoo, H.; Shinba, M.; Sato, Y.; Yamada, H.; Murakami, Y. Synlett 2000, 1196–1198.
Colombo, E.; Ratel, P.; Mounier, L.; Guillier, F. J. Flow Chem. 2011, 2, 68–73.
Garland, M.; Blaser, H.-U. J. Am. Chem. Soc. 1990, 112, 7048–7050;
Vargas, A.; Bürgi, T.; Baiker, A. New J. Chem. 2002, 26, 807–810;
Szőllősi, Gy.; Cserényi, Sz.; Fülöp, F.; Bartók, M. J. Catal. 2008, 260, 245–253;
Szőllősi, Gy.; Cserényi, Sz.; Bucsi, I.; Bartók, T.; Fülöp, F.; Bartók, M. Appl. Catal. A: Gen. 2010, 382, 263–271.
Künzle, N.; Hess, R.; Mallat, T.; Baiker, A. J. Catal. 1999, 186, 239–241;
Toukoniitty, E.; Nieminen, V.; Taskinen, A.; Päivärinta, J.; Hotokka, M.;Murzin, D. Yu. J. Catal. 2004, 224, 326–339.
Szőllősi, Gy.; Hermán, B.; Fülöp, F.; Bartók, M. React. Kinet. Catal. Lett. 2006, 88, 391–398;
Hermán, B.; Szőllősi, Gy.; Fülöp, F.; Bartók, M. Appl. Catal. A: Gen. 2007, 331, 39–43;
Szőllősi, Gy.; Cserényi, Sz.; Bartók, M. Catal. Lett. 2010, 134, 264–269.
Ellison, P.; Feinberg, M. J. Mol. Catal. A: Chem. 2000, 154, 155–167;
Toukoniitty, E.; Mäki-Arvela, P.; Nieminen, V.; Salmi, T.; Murzin, D. Yu. Kinet. Catal. 2003, 44, 562–571;
Ciambelli, P.; Sannino, D.; Palma, V.; Vaiano, V.; Bickley, R. I. Appl. Catal. A: Gen. 2008, 349, 140–147;
Fuchs, M.; Goessler, W.; Pilger, C.; Kappe, C. O. Adv. Synth. Catal. 2010, 352, 323–328;
Morawsky, V.; Prüße, U.; Witte, L.; Vorlop, K.-D. Catal. Commun. 2000, 1, 15–20;
Bartók, M.; Szőllősi, Gy.; Balázsik, K.; Bartók, T. J. Mol. Catal. A: Chem. 2002, 177, 299–305;
Szőllősi, Gy.; Forgó, P.; Bartók, M. Chirality 2003, 15, S82–S89.
22. ThalesNano. H-Cube® Continuous-flow Hydrogenation Reactor. http://thalesnano.com/h-cube (accessed 21 March 2015).