Authors:
Lenke Kovács University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary

Search for other papers by Lenke Kovács in
Current site
Google Scholar
PubMed
Close
,
György Szőllősi MTA-SZTE Stereochemistry Research Group, Dóm tér 8, H-6720 Szeged, Hungary

Search for other papers by György Szőllősi in
Current site
Google Scholar
PubMed
Close
, and
Ferenc Fülöp University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
MTA-SZTE Stereochemistry Research Group, Dóm tér 8, H-6720 Szeged, Hungary

Search for other papers by Ferenc Fülöp in
Current site
Google Scholar
PubMed
Close
Restricted access

The asymmetric heterogeneous catalytic cascade reaction of ethyl 2-nitro-3-methylphenylpyruvate has been investigated over platinum modified by cinchonidine in continuous-flow system using a fixed-bed reactor. The high selectivities and enantioselectivities of the (R)-3-hydroxy-3,4-dihydro-8-methylquinolin-2(1H)-one obtained in previous studies in batch reactor were not reached. The catalyst was in situ prehydrogenated and premodified with cinchonidine, and the reaction conditions optimized for batch reactor were changed in order to increase the yield and enantioselectivity of the desired product under flow conditions. Results obtained in the flow apparatus contributed to the understanding of the reaction pathway through which the quinolone is formed. It was shown that, at low conversions, the intermediate aminohydroxyester desorbs preferentially and is further transformed by readsorption and cyclization to the quinolone derivative after complete disappearance of the 2-nitrophenylpyruvate. However, at high conversion, the formation of the quinolone may also occur instantaneously on the Pt surface following the two competitive reduction steps. The ratio of the product formed through these two pathways is determined by the reaction conditions and the system used.

  • 1. For recent reviews on use of continuous-flow systems in chemical synthesis, see: (a)

    Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 23002318;

  • (b)

    Sahoo, H. R.; Kralj, J. G.; Jensen, K. F. Angew. Chem., Int. Ed. 2007, 46, 57045708;

  • (c)

    Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675680;

  • (d)

    Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Angew. Chem., Int. Ed. 2011, 50, 75027519;

  • (e)

    Noèl, T. Buchwald, S. L. Chem. Soc. Rev. 2011, 40, 50105029;

  • (f)

    Wegner, J.; Ceylan, S.; Kirschning, A. Adv. Synth. Catal. 2012, 354, 1757;

  • (g)

    Anderson, N. G. Org. Process Res. Dev. 2012, 16, 852869;

  • (h)

    Baxendale, I. R. J. Chem. Technol. Biotechnol. 2013, 88, 519552;

  • (i)

    Wiles, C.; Watts, P. Green Chem. 2014, 16, 5562.

  • 2. For reviews of continuous-flow processes applied in the preparation of natural products and pharmaceutical intermediates: (a)

    Watts, P.; Haswell, S. J. Drug Discovery Today 2003, 8, 586593;

  • (b)

    Wiles, C.; Watts, P. Expert Opin. Drug Discovery 2007, 2, 14871503;

  • (c)

    Baumann, M.; Baxendale, I. R.; Ley, S. V. Mol. Diversity 2011, 15, 613630;

  • (d)

    Malet-Sanz, L.; Susanne, F. J. Med. Chem. 2012, 55, 40624098;

  • (e)

    Baraldi, P. T.; Hessel, V. Green Process Synth. 2012, 1, 149167;

  • (f)

    Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev. 2013, 42, 88498869.

  • 3. For recent reviews on continuous-flow asymmetric catalytic reactions, see: (a)

    Mak, X. Y.; Laurino, P.; Seeberger, P. H. Beilstein J. Org. Chem. 2009, 5, No. 19;

  • (b)

    Burguete, M. I.; García-Verdugo, E.; Luis, S. V. Beilstein J. Org. Chem. 2011, 7, 13471359;

  • (c)

    Rasheed, M.; Elmore, S. C.; Wirth, T. Asymmetric Reactions in Flow Reactors. In Catalytic Methods in Asymmetric Synthesis, Advanced Materials, Techniques, and Applications; Gruttadauria, M.; Giacalone, F., Eds.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2011; Chapter 8, pp. 345371;

    • Search Google Scholar
    • Export Citation
  • (d)

    Tsubogo, T.; Ishiwata, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2013, 52, 65906604;

  • (e)

    Zhao, D.; Ding, K. ACS Catal. 2013, 3, 928944;

  • (f)

    Puglisi, A; Benaglia, M.; Chiroli, V. Green Chem. 2013, 15, 17901813.

  • 4. (a)

    Handbook of Asymmetric Heterogeneous Catalysis; Ding, K.; Uozumi, Y., Eds.; Wiley-VCH: Weinheim, 2008;

  • (b)

    Enantioselective Homogeneous Supported Catalysis; Šebesta, R., Ed.; RSC Green Chem. No. 15; RSC Publ.: Cambridge, 2012.

  • 5. For reviews on utilization of immobilized chiral metal complexes and organocatalysts, see: (a)

    Corma, A.; Garcia, H. Adv. Synth. Catal. 2006, 348, 13911412;

  • (b)

    Kobayashi, S.; Sugiura, M. Adv. Synth. Catal. 2006, 348, 14961504;

  • (c)

    Heitbaum, M.; Glorius, F.; Escher, I. Angew. Chem., Int. Ed. 2006, 45, 4732– 4762;

  • (d)

    Ding, K.; Wang, Z.; Wang, X.; Liang, Y.; Wang, X. Chem. Eur. J. 2006, 12, 51885197;

  • (e)

    Benaglia, M. New J. Chem. 2006, 30, 15251533;

  • (f)

    Thomas, J. M.; Raja, R. Acc. Chem. Res. 2008, 41, 708720;

  • (g)

    Fraile, J. M.; García. J. I.; Mayoral, J. A. Coord. Chem. Rev. 2008, 252, 624646;

  • (h)

    Ni, B.; Headley, A. D. Chem. Eur. J. 2010, 16, 44264436;

  • (i)

    Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 11961231;

  • (j)

    He, Y.-M.; Feng, Y.; Fan, Q.-H. Acc. Chem. Res. 2014, 47, 28942906;

  • (k)

    Fernandes, A. E.; Jonas, A. M.; Riant, O. Tetrahedron 2014, 70, 17091731;

  • (l)

    El Kadib, A. Chem Sus Chem 2015, 8, 217244.

  • 6. For reviews on application of asymmetric heterogeneous catalysts obtained by adsorption of chiral modifiers, see: (a)

    Studer, M.; Blaser, H.-U.; Exner, C. Adv. Synth. Catal. 2003, 345, 4565;

  • (b)

    Murzin, D. Yu.; Mäki-Arvela, P.; Toukoniitty, E.; Salmi, T. Catal. Rev. Sci. Eng. 2005, 47, 175256;

  • (c)

    Osawa, T.; Harada, T.; Takayasu, O. Curr. Org. Chem. 2006, 10, 15131531;

  • (d)

    Bartók, M. Curr. Org. Chem. 2006, 10, 15331567;

  • (e)

    Mallat, T.; Orglmeister, E.; Baiker, A. Chem. Rev. 2007, 107, 48634890;

  • (f)

    Zaera, F. Acc. Chem. Res. 2009, 42, 11521160;

  • (g)

    Margitfalvi, J. L.; Tálas, E. Asymmetric hydrogenation of activated ketones. In Catalysis; Spivey, J. J.; Dooley, K.M., Eds.; RSC Publ.: Cambridge, 2010; vol. 22, pp. 144278;

    • Search Google Scholar
    • Export Citation
  • (h)

    Yasukawa, T.; Miyamura, H.; Kobayashi, S. Chem. Soc. Rev. 2014, 43, 14501461.

  • 7. (a)

    Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006;

  • (b)

    Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 71347186;

  • (c)

    Poulin, J.; Grisé-Bard, C. M.; Barriault, L. Chem. Soc. Rev. 2009, 38, 30923101;

  • (d)

    Alba, A.-N.; Companyo, X.; Viciano, M.; Rios, R. Curr. Org. Chem. 2009, 13, 14321474;

  • (e)

    Barluenga, J.; Rodríguez, F.; Fañanás, F. J. Chem. Asian J. 2009, 4, 10361048;

  • (f)

    Pellissier, H. Chem. Rev. 2013, 113, 442524.

  • 8. For reviews on asymmetric catalytic domino or cascade reactions, see: (a)

    Chapman, C. J.; Frost, C. G. Synthesis 2007, 121;

  • (b)

    Grondal, C.; Jeanty, M.; Enders, D. Nature Chem. 2010, 2, 167178;

  • (c)

    Pellissier, H. Adv. Synth. Catal. 2012, 354, 237294;

  • (d)

    Clavier, H.; Pellissier, H. Adv. Synth. Catal. 2012, 354, 33473403;

  • (e)

    Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314325;

  • (f)

    Pellissier, H. Asymmetric Domino Reactions. RSC Catalysis Series No. 10; RSC Publ.: Cambridge, 2013;

  • (g)

    Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 23902431.

  • 9. For examples of asymmetric cascade reactions catalysed by immobilized chiral catalysts, see: (a)

    Choudary, B. M.; Chowdari, N. S.; Madhi, S.; Kantam, M. L. Angew. Chem., Int. Ed. 2001, 40, 46204623;

  • (b)

    Choudary, B. M.; Chowdari, N. S.; Jyothi, K.; Kumar, N. S.; Kantam, M. L. Chem. Commun. 2002, 586–587;

  • (c)

    Yang, S.; He, J. Chem. Commun. 2012, 48, 1034910351;

  • (d)

    Akagawa, K.; Umezawa, R.; Kudo, K. Beilstein J. Org. Chem. 2012, 8, 1333– 1337;

  • (e)

    Jiang, X.; Zhu, H.; Shi, X.; Zhong, Y.; Li, Y.; Wang, R. Adv. Synth. Catal. 2013, 355, 308314;

  • (f)

    Deiana, L.; Ghisu, L.; Afewerki, S.; Verho, O.; Johnston, E. V.; Hedin, N.; Bacsik, Z.; Córdova, A. Adv. Synth. Catal. 2014, 356, 24852492;

    • Search Google Scholar
    • Export Citation
  • (g)

    Yadav, J.; Stanton, G. R.; Fan, X.; Robinson, J. R.; Schelter, E. J.; Walsh, P. J.; Pericas, M. A. Chem. Eur. J. 2014, 20, 71227127;

    • Search Google Scholar
    • Export Citation
  • (h)

    An, Z.; Guo, Y.; Zhao, L.; Li, Z.; He, J. ACS Catal. 2014, 4, 25662576.

  • 10.

    Felföldi, K.; Szöri, K.; Bartók, M. Appl. Catal. A: Gen. 2003, 351, 457460.

  • 11.

    Szőllősi, Gy.; Bartók, M. Arkivoc 2012, 16–27.

  • 12. (a)

    Szőllősi, Gy.; Makra, Zs.; Kovács, L.; Fülöp. F.; Bartók, M. Adv. Synth. Catal. 2013, 355, 16231629;

  • (b)

    Szőllősi, Gy. Magyar Kém. Foly. 2014, 120, 7782;

  • (c)

    Szőllősi, Gy.; Kovács, L.; Makra, Zs. Catal. Sci. Technol. 2015, 5, 697704.

  • 13.

    Alza, E.; Sayalero, S.; Cambeiro, X. C.; Martín-Rapún, R.; Miranda, P. O.; Pericàs, M. A. Synlett 2011, 464468.

  • 14.

    Suzuki, H.; Gyoutoku, H.; Yokoo, H.; Shinba, M.; Sato, Y.; Yamada, H.; Murakami, Y. Synlett 2000, 11961198.

  • 15.

    Colombo, E.; Ratel, P.; Mounier, L.; Guillier, F. J. Flow Chem. 2011, 2, 6873.

  • 16. (a)

    Garland, M.; Blaser, H.-U. J. Am. Chem. Soc. 1990, 112, 70487050;

  • (b)

    Vargas, A.; Bürgi, T.; Baiker, A. New J. Chem. 2002, 26, 807810;

  • (c)

    Szőllősi, Gy.; Cserényi, Sz.; Fülöp, F.; Bartók, M. J. Catal. 2008, 260, 245253;

  • (d)

    Szőllősi, Gy.; Cserényi, Sz.; Bucsi, I.; Bartók, T.; Fülöp, F.; Bartók, M. Appl. Catal. A: Gen. 2010, 382, 263271.

  • 17. (a)

    Künzle, N.; Hess, R.; Mallat, T.; Baiker, A. J. Catal. 1999, 186, 239241;

  • (b)

    Li, X.; Li, C. Catal. Lett. 2001, 77, 251254;

  • (c)

    Toukoniitty, E.; Nieminen, V.; Taskinen, A.; Päivärinta, J.; Hotokka, M.;Murzin, D. Yu. J. Catal. 2004, 224, 326339.

  • 18. (a)

    Szőllősi, Gy.; Hermán, B.; Fülöp, F.; Bartók, M. React. Kinet. Catal. Lett. 2006, 88, 391398;

  • (b)

    Hermán, B.; Szőllősi, Gy.; Fülöp, F.; Bartók, M. Appl. Catal. A: Gen. 2007, 331, 3943;

  • (c)

    Szőllősi, Gy.; Cserényi, Sz.; Bartók, M. Catal. Lett. 2010, 134, 264269.

  • 19. (a)

    Ellison, P.; Feinberg, M. J. Mol. Catal. A: Chem. 2000, 154, 155167;

  • (b)

    Toukoniitty, E.; Mäki-Arvela, P.; Nieminen, V.; Salmi, T.; Murzin, D. Yu. Kinet. Catal. 2003, 44, 562571;

  • (c)

    Ciambelli, P.; Sannino, D.; Palma, V.; Vaiano, V.; Bickley, R. I. Appl. Catal. A: Gen. 2008, 349, 140147;

  • (d)

    Fuchs, M.; Goessler, W.; Pilger, C.; Kappe, C. O. Adv. Synth. Catal. 2010, 352, 323328;

  • (e)

    Cantillo, D.; Kappe, C. O. ChemCatChem 2014, 6, 32863305.

  • 20. (a)

    Morawsky, V.; Prüße, U.; Witte, L.; Vorlop, K.-D. Catal. Commun. 2000, 1, 1520;

  • (b)

    Bartók, M.; Szőllősi, Gy.; Balázsik, K.; Bartók, T. J. Mol. Catal. A: Chem. 2002, 177, 299305;

  • (c)

    Szőllősi, Gy.; Forgó, P.; Bartók, M. Chirality 2003, 15, S82S89.

  • 21.

    Baiker, A. J. Mol. Catal. A: Chem. 1997, 115, 473493.

  • 22. ThalesNano. H-Cube® Continuous-flow Hydrogenation Reactor. http://thalesnano.com/h-cube (accessed 21 March 2015).

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Flow Chemistry
Language English
Size A4
Year of
Foundation
2011
Volumes
per Year
1
Issues
per Year
4
Founder Áramlásos Kémiai Tudományos Társaság
Founder's
Address
H-1031 Budapest, Hungary Záhony utca 7.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-249X (Print)
ISSN 2063-0212 (Online)