Elnaz ShahbazaliEindhoven University of Technology, Eindhoven 5600 MB, The Netherlands

Search for other papers by Elnaz Shahbazali in
Current site
Google Scholar
Timothy NoëlEindhoven University of Technology, Eindhoven 5600 MB, The Netherlands

Search for other papers by Timothy Noël in
Current site
Google Scholar
, and
Volker HesselEindhoven University of Technology, Eindhoven 5600 MB, The Netherlands

Search for other papers by Volker Hessel in
Current site
Google Scholar
Restricted access

We converted diverse commercial meta-substituted phenols to the allyl-substituted precursors via nucleophilic substitution using batch technology to allow processing these in microflow by means of the photo-Claisen rearrangement. The latter process is researched on its own, as detailed below, and also prepares the ground for a fully continuous two-step microflow synthesis, as outlined above. It is known that batch processing of electronically deactivated phenols (e.g., bearing a cyano or nitro group) has several orders of magnitude lower reactivity than their parental counterparts [1]. Thus, we here explore if the high quantum yield of microflow, yet at very short residence time, is sufficient to activate the deactivated molecules. In addition, the realization of a true orthogonal two-step flow synthesis can open the door to a large synthetic scope of our approach and possibly overcome limitations due to missing orthogonality of our previously reported thermal approach of combined nucleophilic substitution-Claisen rearrangement in microflow. Consequently, we make for our photo microflow approach an orthogonality check, as previously reported for the thermal approach, and compare both.

To get a broader picture, we have investigated some major parametric sensitivities such as the irradiation intensity, the choice of solvent, the reactant concentration, and, most notably, the influence of the substitution pattern. The irradiation intensity was varied by increasing distance between a lamp and the microflow capillary. In addition, the normal photo-Claisen microflow process (at room temperature) is compared to a high-temperature photo-Claisen microflow process, to check the potential of such novel process window [2]. This is difficult to realize in batch, as the combination of strong ultraviolet (UV) irradiation and high temperature causes a high hazard potential. Yet, under microflow, this can be safely handled.

  • 1.

    Pincock, A. L.; Pincock, J. A.; Stefanova, R. J. Am. Chem. Soc. 2002, 124, 97689778.

  • 2.

    Hessel, V.; Kralisch, D.; Kockmann, N.; Noël, T.; Wang, Q. ChemSusChem 2013, 6, 746789.

  • 3.

    Smith, M. B.; March, J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, edition 6; John Wiley and Sons, Inc.: Hoboken, New Jersey, 2006; vol. 9780471720.

    • Search Google Scholar
    • Export Citation
  • 4.

    Zelentsov, S.; Hessel, V.; Shahbazali, E.; Noël, T. ChemBioEng Rev. 2014, 1, 230240.

  • 5.

    Hessel, V.; Shahbazali, E.; Noël, T.; Zelentsov, S. ChemBioEng Rev. 2014, 1, 244261.

  • 6.

    Hessel, V.; Löwe, H. Chem. Eng. Technol. 2003, 26, 1324.

  • 7.

    Hessel, V.; Löwe, H. Chem. Eng. Technol. 2003, 26, 391408.

  • 8.

    Kobayashi, H.; Driessen, B.; van Osch, D. J. G. P.; Talla, A.; Ookawara, S.; Noël, T.; Hessel, V. Tetrahedron 2013, 69, 28852890.

  • 9.

    Sato, M.; Otabe, N.; Tuji, T.; Matsushima, K.; Kawanami, H.; Chatterjee, M.; Yokoyama, T.; Ikushima, Y.; Suzuki, T. M. Green Chem. 2009, 11, 763.

    • Search Google Scholar
    • Export Citation
  • 10.

    Kong, L.; Lin, Q.; Lv, X.; Yang, Y.; Jia, Y.; Zhou, Y. Green Chem. 2009, 11, 11081111.

  • 11.

    Maeda, H.; Nashihara, S.; Mukae, H.; Yoshimi, Y.; Mizuno, K. Res. Chem. Intermed. 2013, 39, 301310.

  • 12.

    Shahbazali, E.; Spapens, M.; Kobayashi, H.; Ookawara, S.; Noël, T.; Hessel, V. Chem. Eng. J. 2015, 281, 144154.

  • 13.

    Razzaq, T.; Kappe, C. O. Chem. Asian J. 2010, 5, 12741289.

  • 14.

    Razzaq, T.; Glasnov, T. N.; Kappe, C. O. Chem. Eng. Technol. 2009, 32, 17021716.

  • 15.

    Cambié, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; Noël, T. Chem. Rev., DOI: 10.1021/acs.chemrev.5b00707.

  • 16.

    Knowles, J. P.; Elliott, L. D.; Booker-Milburn, K. I. Beilstein J. Org. Chem. 2012, 8, 20252052.

  • 17.

    Pitchumani, K.; Warrier, M.; Ramamurthy, V. J. Am. Chem. Soc. 1996, 118, 94289429.

  • 18.

    Galindo, F. J. Photochem. Photobiol., C 2005, 6, 123138.

  • 19.

    Koga, G.; Kikuchi, N.; Koga, N. Bull. Chem. Soc. Jpn. 1968, 41, 745746.

  • 20.

    Waespe, H. R.; Heimgartner, H.; Schmid, H.; Hansen, H. J.; Paul, H.; Fischer, H. Helv. Chim. Acta 1978, 61, 401429.

  • 21.

    Sugimoto, A.; Fukuyama, T.; Sumino, Y.; Takagi, M.; Ryu, I. Tetrahedron 2009, 65, 15931598.

  • 22.

    Hughes, E. D.; Ingold, C. K. J. Chem. Soc. 1935, 244.

  • 23.

    Lee, A.; Stewart, J. D.; Clardy, J.; Ganem, B. Chem. Biol. 1995, 2, 195203.

  • 24.

    Uyeda, C.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 92289229.

  • 25.

    Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003, 424, 146.

  • 26.

    Lindsey, J. S.; Wagner, R. W. J. Org. Chem. 1989, 54, 828836.

  • 27.

    Severance, D. L.; Jorgensen, W. L. J. Am. Chem. Soc. 1992, 114, 1096610968.

  • 28.

    Davidson, M. M.; Hillier, I. H.; Hall, R. J.; Burton, N. A. J. Am. Chem. Soc. 1994, 116, 92949297.

  • 29.

    Brandes, E.; Grieco, P. A.; Gajewski, J. J. J. Org. Chem. 1989, 54, 515516.

  • 30.

    Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, edition 4; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2010.

  • 31.

    Carroll, F. A.; Hammond, G. S. J. Am. Chem. Soc. 1972, 94, 71517152.

  • 32.

    Haga, N.; Takayanagi, H. J. Org. Chem. 1996, 61, 735745.

  • 33.

    Ripin, D. H.; Evans, D. A. Pka table. evans_pKa_table.pdf (accessed November 04, 2005).

  • 34.

    PKa, (accessed September 16, 2004).

  • 35.

    Coyle, E. E.; Oelgemöller, M. Photochem. Photobiol. Sci. 2008, 7, 1313.

  • 36.

    Su, Y.; Straathof, N. J.W.; Hessel, V.; Noël, T. Chem. – A Eur. J. 2014, 20, 1056210589.

  • 37.

    Makogon, M. M.; Ponomarev, Y. N.; Tikhomirov, B. A. Atmos. Ocean. Opt. 2013, 26, 4549.

  • 38.

    Syamala, M. S.; Ramamurthy, V. Tetrahedron 1988, 44, 72237233.

  • 39.

    White, W. N.; Wolfarth, E. F. J. Org. Chem. 1970, 35, 3585.

  • 40.

    Gonzalez, C. M.; Pincock, J. A. Can. J. Chem. 2008, 86, 686690.

  • 41.

    Gozzo, F. C.; Fernandes, S. A.; Rodrigues, D. C.; Eberlin, M. N.; Marsaioli, A. J. J. Org. Chem. 2003, 68, 54935499.

  • 42.

    Sayyed, I. A.; Thakur, V. V.; Nikalje, M. D.; Dewkar, G. K.; Kotkar, S. P.; Sudalai, A. Tetrahedron 2005, 61, 28312838.

  • 43.

    Han, X.; Armstrong, D. W. Org. Lett. 2005, 7, 42054208.

  • 44.

    Schubnell, M.; Kamber, I.; Beaud, P. Appl. Phys. A 1996, 64, 109113.

  • 45.

    Fuse, S.; Tanabe, N.; Yoshida, M.; Yoshida, H.; Doi, T.; Takahashi, T. Chem. Commun. 2010, 46, 87228724.

  • 46.

    Gottfried, N.; Kaiser, W.; Braun, M.; Fuss, W.; Kompa, K. L. Chem. Phys. Lett. 1984, 110, 335339.

  • 47.

    Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry Part A: Structure and Mechanisms, Springer: New York, NY, 2007.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Flow Chemistry
Language English
Size A4
Year of
per Year
per Year
Founder Áramlásos Kémiai Tudományos Társaság
H-1031 Budapest, Hungary Záhony utca 7.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-249X (Print)
ISSN 2063-0212 (Online)