Author:
G Csaba Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary

Search for other papers by G Csaba in
Current site
Google Scholar
PubMed
Close
Restricted access

Lipid-soluble vitamins (vitamins A, D, E, and K) are actually hormones (exohormones), as they can be directly bound by hormone receptors or are in connection with molecules, which influence hormone receptors. Vitamin D is a transition between endo- and exohormones and the possibility of similar situation in case of other lipid-soluble hormones is discussed. The perinatal exposition with these “vitamins” can cause faulty perinatal hormonal imprinting with similar consequences as the faulty imprinting by the synthetic endohormones, members of the same hormone family or industrial, communal, or medical endocrine disruptors. The faulty imprinting leads to late (lifelong) consequences with altered hormone binding by receptors, altered sexuality, brain function, immunity, bone development, and fractures, etc. In addition, as hormonal imprinting is an epigenetic process, the effect of a single exposure by fat-soluble vitamins is inherited to the progeny generations. As vitamins are handled differently from hormones; however, perinatal treatments take place frequently and sometimes it is forced, the negative late effect of faulty perinatal vitamin-caused hormonal imprinting must be considered.

  • 1.

    Azars Braesco V , Pascal G : Vitamin A in pregnancy: requirements and safety limits. Am. J. Clin. Nutr. 71, 13251333 (2000)

  • 2.

    Azuma K , Horie-Inoue K , Ouchi Y , Inoue S (2011): Chapter 11 – vitamin K as a ligand of steroid and xenobiotic receptor. In: Advances in Medicine and Biology (Vol. 21), ed Berhardt LV, Nova Science Publishers, Hauppauge, pp. 209216

    • Search Google Scholar
    • Export Citation
  • 3.

    Azuma K , Inoue S : Vitamin K function mediated by activation of steroid and xenobiotic receptor. Clin. Calcium 19, 17701778 (2009)

  • 4.

    Barker DJ : Sir Richard Doll lecture. Developmental origins of chronic disease. Public Health 126, 185189 (2012)

  • 5.

    Bernal J : Thyroid hormone receptors in brain development and function. Nat. Clin. Pract. Endocrinol. Metab. 3, 249259 (2007)

  • 6.

    Berne B , Nilsson M , Vahlquist A : UV irradiation and cutaneous vitamin A: an experimental study in rabbit and human skin. J. Invest. Dermatol. 83, 401404 (1984)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Calkins K , Devaska SU : Fetal origins of adult disease. Curr. Probl. Pediatr. Adolesc. Health Care 41, 158176 (2011)

  • 8.

    Carlberg C : Lipid soluble vitamins in gene regulation. Biofactors 10, 9197 (1999)

  • 9.

    Charles MA , Delpierre C , Bréant B : [Developmental origin of health and adult diseases (DOHaD): evolution of a concept over three decades]. Med. Sci. (Paris) 32, 1520 (2016)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Chytil F : Vitamin A: not for vision only. Br. J. Nutr. 82, 161162 (1999)

  • 11.

    Comitato R , Nasaretnam K , Leoni G, Ambra R , Canali R , Bolli A , Marino M , Virgili F : A novel mechanism of natural vitamin E tocotrienol activity: involvement of ER-beta signal transduction. Endocrinol. Metab. 297, E427E437 (2009)

    • Search Google Scholar
    • Export Citation
  • 12.

    Csaba G : Phylogeny and ontogeny of hormone receptors: the selection theory of receptor formation and hormonal imprinting. Biol. Rev. Camb. Philos. Soc. 55, 4763 (1980)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Csaba G : Phylogeny and ontogeny of chemical signaling: origin and development of hormone receptors. Int. Rev. Cytol. 155, 148 (1994)

  • 14.

    Csaba G : Hormonal imprinting: its role during the evolution and development of hormones and receptors. Cell Biol. Int. 24, 407414 (2000)

  • 15.

    Csaba G : Hormonal imprinting: phylogeny, ontogeny, diseases and possible role in present-day human evolution. Cell Biochem. Funct. 26, 110 (2008)

  • 16.

    Csaba G : The biological basis and clinical significance of hormonal imprinting, an epigenetic process. Clin. Epigenet. 2, 187196 (2011)

  • 17.

    Csaba G : The immuno-endocrine system: hormones, receptors and endocrine function of immune cells. The packed-transport theory. Adv. Neuroimmunol. Biol. 1, 7185 (2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Csaba G : Hormones in the immune system and their possible role. A critical review. Acta Microbiol. Immunol. Hung. 61, 241260 (2014)

  • 19.

    Csaba G : Immunoendocrinology: faulty hormonal imprinting in the immune system. Acta Microbiol. Immunol. Hung. 61, 89106 (2014)

  • 20.

    Csaba G : Faulty perinatal hormonal imprinting caused by exogeneous vitamin D – dangers and problems. Austin J. Nutr. Food Sci. 4, 10751080 (2016)

    • Search Google Scholar
    • Export Citation
  • 21.

    Csaba G : The faulty perinatal hormonal imprinting as functional teratogen. Curr. Pediatr. Rev. 12, 222229 (2016)

  • 22.

    Csaba G : The present and future of human sexuality: impact of faulty perinatal hormonal imprinting. Sex. Med. Rev. 5, 163169 (2017)

  • 23.

    Csaba G , Gaál A : Effect of perinatal vitamin A or retinoic acid treatment (hormonal imprinting) on the sexual behavior of adult rats. Hum. Exp. Toxicol. 16, 193197 (1997)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Csaba G , Inczefi-Gonda Á : Neonatal vitamin E treatment induces long term glucocorticoid receptor changes: an unusual hormonal imprinting effect. Life Sci. 63, 101105 (1998)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Csaba G , Inczefi-Gonda Á : Direct and transgenerational effect of benzpyrene treatment at adolescent age on the uterine estrogen receptor and thymic glucocorticoid receptor of the adult rat. Acta Physiol. Hung. 86, 2936 (1999)

    • Search Google Scholar
    • Export Citation
  • 26.

    Csaba G , Inczefi-Gonda Á : Effect of single neonatal vitamin K1 treatment (imprinting) on the binding capacity of thymic glucocorticoid and uterine estrogen receptors of adolescent and adult rats. Life Sci. 65, PL1PL5 (1999)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Csaba G , Inczefi-Gonda Á : Effect of vitamin D(3) treatment in the neonatal or adolescent age (hormonal imprinting) on the thymic glucocorticoid receptor of the adult male rat. Horm. Res. 51, 280283 (1999)

    • Search Google Scholar
    • Export Citation
  • 28.

    Csaba G , Inczefi-Gonda Á : Similarities and dissimilarities of newborn and adolescent rats in the binding capacity of thymic glucocorticoid receptors. Mech. Ageing Dev. 122, 327334 (2001)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Csaba G , Inczefi-Gonda Á : Molecules acting on receptor level at weaning, durably influence liver glucocorticoid receptors. Acta Physiol. Hung. 92, 3338 (2005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Csaba G , Karabélyos C : Influence of a single treatment with vitamin E or K (hormonal imprinting) of neonatal rats on the sexual behavior of adults. Acta Physiol. Hung. 87, 2530 (2000)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Csaba G , Kovács P , Pállinger É : Impact of neonatal imprinting with vitamin A or D on the hormone content of rat immune cells. Cell Biochem. Funct. 25, 717721 (2007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Csaba G , Tekes K : Is the brain hormonally imprintable? Brain Dev. 27, 465471 (2005)

  • 33.

    Dörner G : Environment- and gene-dependent human ontogenesis, sociogenesis and phylogenesis (eco-geno-onto-socio-phylogenesis). Neuro Endocrinol. Lett. 25, 164168 (2004)

    • Search Google Scholar
    • Export Citation
  • 34.

    Fetahu IS , Höbaus J , Kállay E : Vitamin D and the epigenome. Eur. J. Physiol. 5, 164 (2014)

  • 35.

    Frye CS , Bo E , Calamandrei G , Calza L , Dessi-Fulgheri F , Fernandez M , Fusani L , Kah O , Kajta M , Le Page Y , Patisaul HB , Venerosi A , Wojtowicz AK , Panzica GC : Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J. Neuroendocrinol. 24, 144159 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Fudvoye J , Bourguignon JP , Parent AS : Endocrine-disrupting chemicals and human growth and maturation: a focus on early critical windows of exposure. Vitam. Horm. 94, 125 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Gaál A , Bocsi J , Falus A , Szende B , Csaba G : Increased apoptosis of adult rat lymphocytes after single neonatal vitamin A treatment (hormonal imprinting). A flow cytometric analysis. Life Sci. 61, PL339PL342 (1997)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Gaál A , Csaba G : Effect of retinoid (vitamin A or retinoic acid) treatment (hormonal imprinting) through breastmilk on the glucocorticoid receptor and estrogen receptor binding capacity of the adult rat offspring. Hum. Exp. Toxicol. 17, 560563 (1998)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Gaál A , Csaba G : Testosterone and progesterone level alterations in the adult rat after retinoid (retinol or retinoic acid) treatment (imprinting) in neonatal or adolescent age. Horm. Metab. Res. 30, 487489 (1998)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Genuis SJ : Maternal and pediatric health outcomes in relation to gestational vitamin D sufficiency. Obstet. Gynecol. Int. 2015, 501829 (2015)

  • 41.

    Greves NJ , McGrath JJ : Vitamin D as a neurosteroid affecting the developing and adult brain. Annu. Rev. Nutr. 34, 117141 (2014)

  • 42.

    Hashemi F , Tekes K , Laufer R , Szegi P , Tóthfalusi L , Csaba G : Effect of a single neonatal oxytocin treatment (hormonal imprinting) on the biogenic amine level of the adult rat brain: could oxytocin-induced labor cause pervasive developmental diseases? Reprod. Sci. 20, 12551263 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Hocher B : More than genes: the advanced fetal programming hypothesis. J. Reprod. Immunol. 104–105, 811 (2014)

  • 44.

    Horie-Inoue K , Inoue S : Steroid and xenobiotic receptor mediates a novel vitamin K2 signaling pathway in osteoblastic cells. J. Bone Miner. Metab. 26, 912 (2008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Hypponen E , Laara E , Reunanen A , Jarvelin MR , Virtanen SM : Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358, 15001503 (2001)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Igarashi M , Yogiahi Y , Mihara M , Takada I : Vitamin K induces osteoblast differentiation through pregnane X receptor-mediated transcriptional control of the Msx2 gene. Mol. Cell. Biol. 27, 79477954 (2007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Inczefi-Gonda Á , Csaba G , Dobozy O : Effect of a single neonatal treatment with steroid hormone or steroid-like molecules on myocardial ouabain binding in the adult rat. Gen. Physiol. Biophys. 6, 279283 (1987)

    • Search Google Scholar
    • Export Citation
  • 48.

    James SR , Franklyn JA , Kilby MD : Placental transport of thyroid hormone. Best Pract. Res. Clin. Endocrinol. Metab. 21, 253264 (2007)

  • 49.

    Karabélyos C , Horváth C , Holló I , Csaba G : Effect of neonatal glucocorticoid treatment on bone mineralization of adult nontreated, dexamethasone-treated or vitamin D3-treated rats. Gen. Pharmacol. 31, 789791 (1998)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Karabélyos C , Horváth C , Holló I , Csaba G : Effect of neonatal vitamin D3 treatment (hormonal imprinting) on the bone mineralization of adult non-treated and dexamethasone treated rats. Hum. Exp. Toxicol. 17, 424429 (1998)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Kidd PM : Vitamins D and K as pleiotropic nutrients: clinical importance to the skeletal and cardiovascular systems and preliminary evidence for synergy. Altern. Med. Rev. 15, 199204 (2010)

    • Search Google Scholar
    • Export Citation
  • 52.

    King MW (2014): Integrative Medical Biochemistry. McGraw-Hill, New York

  • 53.

    Kliewer SA : The nuclear pregnane X receptor regulates xenobiotic detoxification. J. Nutr. 133, 2444S2447S (2003)

  • 54.

    Kliewer SA , Goodwin B , Willson TM : The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr. Rev. 23, 687702 (2002)

  • 55.

    Kőhidai L , Lajkó E , Pállinger É , Csaba G : Verification of epigenetic inheritance in a unicellular model system: multigenerational effects of hormonal imprinting. Cell Biol. Int. 36, 951959 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Landes N , Pfluger P , Kluth D , Birringer M , Rühl R , Böl GF , Glatt H , Brigelius-Flohé R : Vitamin E activates gene expression via the pregnane X receptor. Biochem. Pharmacol. 15, 269273 (2003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Mirzahosseini S , Karabélyos C , Dobozy O , Csaba G : Changes in sexual behavior of adult male and female rats neonatally treated with vitamin D3. Hum. Exp. Toxicol. 15, 573576 (1996)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Moon JY , Gwak HS : Role of the nuclear pregnane X receptor in drug metabolism and the clinical response. Recept. Clin. Invest. 2, e.996 (2015)

    • Search Google Scholar
    • Export Citation
  • 59.

    Morreale de Escobar G , Obregon MJ , Escobar del Rey E : Role of thyroid hormone during early brain development. Eur. J. Endocrinol. 151(Suppl. 3), U25U37 (2004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Morris-Kay GM , Ward SJ : Retinoids and mammalian development. Int. Rev. Cytol. 188, 73131 (1999)

  • 61.

    Nucera C , Muzzi P , Tiveron C , Farsetti A , La Regina F , Foglio B , Shih SC , Moretti F , Della Pietra R , Mancini F , Sacchi A , Trimarchi F , Vercelli A , Pontecorvi A : Maternal thyroid hormones are transcriptionally active during embryo-foetal development: results from a novel transgenic mouse model. J. Cell. Mol. Med. 14, 24172435 (2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Palanza P , Nagel SC , Parmigiani S , Vom Saal FS : Perinatal exposure to endocrine disruptors: sex, timing and behavioral endpoints. Curr. Opin. Behav. Sci. 7, 6975 (2016)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Patel J , Landers K , Li H , Mortimer RH , Richard K : Delivery of maternal thyroid hormones to the fetus. Trends Endocrinol. Metab. 22, 164170 (2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Pembrey M , Saffery R , Bygren LO : Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research. J. Med. Gen. 51, 563572 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Pembrey ME : Time to take epigenetic inheritance seriously. Eur. J. Hum. Gen. 10, 669671 (2002)

  • 66.

    Penniston KL , Tanumihardjo SA : The acute and chronic toxic effects of vitamin A. Am. J. Clin. Nutr. 83, 191201 (2006)

  • 67.

    Reichetzeder C , Dwi Putra SE , Hocher B : Developmental origins of disease – crisis precipitates change. Cell. Physiol. Biochem. 39, 919938 (2016)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Reichrath J , Lehman B , Carlberg C , Varani J , Zouboulis CC : Vitamins as hormones. Horm. Metab. Res. 39, 7184 (2007)

  • 69.

    Saurat JH : Skin, sun, and vitamin A: from aging to cancer. J. Dermatol. 28, 595598 (2001)

  • 70.

    Schnorr CE , Morrone Mda S , Weber MH , Lorenz R , Behr GA , Moreira JC : The effects of vitamin A supplementation to rats during gestation and lactation upon redox parameters: increased oxidative stress and redox modulation in mothers and their offspring. Food Chem. Toxicol. 49, 26452654 (2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Sorg O , Tran C , Saurat JH : Cutaneous vitamins A and E in the context of ultraviolet- or chemically-induced oxidative stress. Skin Pharmacol. Appl. Skin Physiol. 14, 363372 (2001)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Tekes K , Gyenge M , Folyovich A , Csaba G : Influence of neonatal vitamin A or vitamin D treatment on the concentration of biogenic amines and their metabolites in the adult rat brain. Horm. Metab. Res. 41, 277280 (2009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Tekes K , Gyenge M , Hantos M , Csaba G : Transgenerational hormonal imprinting caused by vitamin A and vitamin D treatment of newborn rats. Alterations in the biogenic amine contents of the adult brain. Brain Dev. 31, 666670 (2009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Traber MG : Vitamin E, nuclear receptors and xenobiotic metabolism. Arch. Biochem. Biophys. 423, 611 (2004)

  • 75.

    Walker DM , Gore AC : Epigenetic impacts of endocrine disruptors in the brain. Front. Neuroendocrinol. 44, 126 (2017)

  • 76.

    Williams GR : Neurodevelopmental and neurophysiological actions of thyroid hormone. J. Neuroendocrinol. 20, 784794 (2008)

  • 77.

    Zhou C , Assem M , Tay JC , Watkins PB , Blumberg B , Schuetz EG , Thummel KE : Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia. J. Clin. Invest. 116, 17031712 (2006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Zouboulis CC : The human skin as a hormone target and an endocrine gland. Hormones (Athens Greece) 3, 926 (2004)

  • Collapse
  • Expand

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 644 EUR / 806 USD
Print + online subscription: 752 EUR / 942 USD
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2022 3 0 0
Jul 2022 23 0 0
Aug 2022 9 0 0
Sep 2022 8 0 0
Oct 2022 3 0 0
Nov 2022 9 0 0
Dec 2022 0 0 0