View More View Less
  • 1 Please ask the editor of the journal.
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00
  • CARNICER, J. M., FLOATER, M. S. and PEÑA, J. M., Linear convexity conditions for rectangular and triangular Bernstein-Bézier surfaces, Comput. Aided Geom. Design15 (1997), 27-38. MR98m:65023

    Linear convexity conditions for rectangular and triangular Bernstein-Bézier surfaces 15 27 38

    • Search Google Scholar
  • DAHMEN, W., Convexity and Bernstein-Bézier polynomials, Curves and surfaces (Chamonix Mont Blanc, 1990), P. J. Laurent, A. Le Méhauté and L. L. Schumaker, eds., Academic Press, Boston, MA, 1991, 107-134. MR92h:65018

    Convexity and Bernstein-Bézier polynomials , () 107 -134.

  • DAHMEN, W. and MICCHELLI, C. A., Convexity of multivariate Bernstein polynomials and box spline surfaces, Studia Sci. Math. Hungar. 23 (1988), 265-287. MR90g:41005

    'Convexity of multivariate Bernstein polynomials and box spline surfaces ' () 23 Studia Sci. Math. Hungar. : 265 -287.

    • Search Google Scholar
  • FENG, Y. Y, CHEN, F. L. and ZHOU, H. L., The invariance of weak convexity conditions of B-nets with respect to subdivision, Comput. Aided Geom. Design11 (1994), 97-107. MR94k:65023

    The invariance of weak convexity conditions of B-nets with respect to subdivision 11 97 107

    • Search Google Scholar
  • FLETCHER, R., Practical methods of optimization, Second edition, John Wiley & Sons, Ltd., Chichester, 1987. MR89j:65050

    Practical methods of optimization , ().

  • CHANG, G. Z. and DAVIS, P. J., The convexity of Bernstein polynomials over triangles, J. Approx. Theory40 (1984), 11-28. MR85c:41001

    The convexity of Bernstein polynomials over triangles 40 11 28

  • CHANG, G. Z. and FENG, Y. Y., An improved condition for the convexity of Bernstein-Bézier surfaces over triangles, Comput. Aided Geom. Design1 (1984), 279-283. Zbl563. 41009

    'An improved condition for the convexity of Bernstein-Bézier surfaces over triangles ' () 1 Comput. Aided Geom. Design : 279 -283.

    • Search Google Scholar
  • GOODMAN, T. N. T., Shape preserving representations, Mathematical methods in computer aided geometric design (Oslo, 1988), T. Lyche and L. L. Schumaker, eds., Academic Press, Boston, MA, 1989, 333-351. MR91a:65031

    Shape preserving representations , () 333 -351.

  • GOODMAN, T. N. T., Convexity of Bézier nets on triangulations, Comput. Aided Geom. Design8 (1991), 175-180. MR92a:65064

    Convexity of Bézier nets on triangulations 8 175 180

  • GRANDINE, T. A., On convexity of piecewise polynomial functions on triangulations, Comput. Aided Geom. Design6 (1989), 181-187. MR90k:65040

    On convexity of piecewise polynomial functions on triangulations 6 181 187

  • GREGORY, J. A. and ZHOU, J. W., Convexity of Bézier nets on sub-triangles, Comput. Aided Geom. Design8 (1991), 207-211. MR92g:65023

    Convexity of Bézier nets on sub-triangles 8 207 211

  • HE, T.-X., Shape criteria of Bernstein-Bézier polynomials over simplexes, Comput. Math. Appl. 30 (1995), 317-333. MR96j:65012

    'Shape criteria of Bernstein-Bézier polynomials over simplexes ' () 30 Comput. Math. Appl. : 317 -333.

    • Search Google Scholar
  • LAI, M.-J., Some sufficient conditions for convexity of multivariate Bernstein-Bézier polynomials and box spline surfaces, Studia Sci. Math. Hungar. 28 (1993), 363-374. MR95d: 65018

    'Some sufficient conditions for convexity of multivariate Bernstein-Bézier polynomials and box spline surfaces ' () 28 Studia Sci. Math. Hungar : 363 -374.

    • Search Google Scholar
  • MICCHELLI, C. A. and PINKUS, A., Some remarks on nonnegative polynomials on polyhedra, Probability, statistics and mathematics, T. Anderson, K. Athreya and D. Iglebert, eds., Academic Press, Boston, MA, 1989, 163-186. MR91h:26014

    Some remarks on nonnegative polynomials on polyhedra , () 163 -186.

  • PRAUTZSCH, H., On convex Bézier triangles, RAIRO Model. Math. Anal. Numer. 26 (1992), 23-36. MR93a:65019

    'On convex Bézier triangles ' () 26 RAIRO Model. Math. Anal. Numer. : 23 -36.

  • SEIDEL, H.-P., Symmetric recursive algorithms for surfaces: B-patches and the de Boor algorithm for polynomials over triangles, Constr. Approx. 7 (1991), 257-279. MR92c:41010

    'Symmetric recursive algorithms for surfaces: B-patches and the de Boor algorithm for polynomials over triangles ' () 7 Constr. Approx. : 257 -279.

    • Search Google Scholar
  • WANG, Z. B. and LIU, Q. M., An improved condition for the convexity and positivity of Bernstein-Bézier surfaces over triangles, Comput. Aided Geom. Design5 (1988), 269-275. MR90b:41016

    'An improved condition for the convexity and positivity of Bernstein-Bézier surfaces over triangles ' () 5 Comput. Aided Geom. Design : 269 -275.

    • Search Google Scholar
  • WILLEMANS, K. and DIERCKX, P., Surface fitting using convex Powell-Sabin splines, J. Comput. Appl. Math. 56 (1994), 263-282. MR96d:65040

    'Surface fitting using convex Powell-Sabin splines ' () 56 J. Comput. Appl. Math. : 263 -282.

    • Search Google Scholar

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)