View More View Less
  • 1 FEI STU, Ilkovičova 3, 812-19 Bratislava, Slovakia
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Multiplicative complexity is the minimum number of AND-gates required to implement a given Boolean function in (AND, XOR) algebra. It is a good measure of a hardware complexity of an S-box, but an S-box cannot have too low multiplicative complexity due to security constraints. In this article we focus on generic constructions that can be used to find good n×n S-boxes with low multiplicative complexity. We tested these constructions in the specific case when n = 8. We were able to find 8 × 8 S-boxes with multiplicative complexity at most 16 (which is half of the known bound on multiplicative complexity of the AES S-box), while providing a reasonable resistance against linear and differential cryptanalysis.

  • [1]

    Ballet, S. and Pieltant, J., On the tensor rank of multiplication in any extension of f2, Journal of Complexity, 27(2) (2011), 230245. DOI 0885064X11000094 http://dx.doi.org/10.1016/j.jco.2011.01.008.URL http://www.sciencedirect.com/science/article/pii/S0885064X11000094

    • Search Google Scholar
    • Export Citation
  • [2]

    Bertoni, G., Daemen, J., Peeters, M. and Van Assche, G., Keccak sponge function family main document, Submission to NIST (Round 2), 3 (2009).

    • Search Google Scholar
    • Export Citation
  • [3]

    Bilgin, B., Nikova, S., Nikov, V., Rijmen, V. and Stütz, G., Threshold implementations of all 3 ×3 and 4 × 4 S-boxes, in: E. Prouff, P. Schaumont (eds.) CHES, Lecture Notes in Computer Science, vol. 7428, Springer (2012), pp. 7691.

    • Search Google Scholar
    • Export Citation
  • [4]

    Biryukov, A., Cannière, C. D., Braeken, A. and Preneel, B., A toolbox for cryptanalysis: Linear and affine equivalence algorithms, in: E. Biham (ed.) Advances in Cryptology – EUROCRYPT 2003, Lecture Notesin Computer Science, vol. 2656, Springer-Verlag (2003), pp. 3350. URL http://dx.doi.org/10.1007/3-540-39200-9_3

    • Search Google Scholar
    • Export Citation
  • [5]

    Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., Poschmann, A., Robshaw, M. J. B., Seurin, Y. and Vikkelsoe, C., PRESENT: An ultra-lightweight block cipher, in: P. Paillier, I. Verbauwhede (eds.) CHES, LectureNotes in Computer Science, vol. 4727, Springer (2007), pp. 450466.

    • Search Google Scholar
    • Export Citation
  • [6]

    Boyar, J. and Peralta, R., Tight bounds for the multiplicative complexity of symmetric functions, Theor. Comput. Sci., 396(13) (2008), 223246. DOI 10.1016/j.tcs.2008.01.030. URL http://dx.doi.org/10.1016/j.tcs.2008.01.030

    • Search Google Scholar
    • Export Citation
  • [7]

    Boyar, J. and Peralta, R., A new combinational logic minimization technique with applications to cryptology, SEA (2010), pp. 178189

  • [8]

    Boyar, J., Peralta, R. and Pochuev, D., On the multiplicative complexity of boolean functions over the basis (∧,⊕, 1), Theoretical Computer Science, 235(1) (2000), 4357.

    • Search Google Scholar
    • Export Citation
  • [9]

    Bulygin, S., More on linear hulls of present-like ciphers and a cryptanalysis of fullround epcbc-96, Cryptology ePrint Archive, Report 2013/028 (2013). URL http://eprint.iacr.org/

    • Search Google Scholar
    • Export Citation
  • [10]

    Carlet, C., Goubin, L., Prouff, E., Quisquater, M. and Rivain, M., Higherorder masking schemes for S-boxes, in: Fast Software Encryption, Springer (2012), pp. 366384.

    • Search Google Scholar
    • Export Citation
  • [11]

    Courtois, N., Hulme, D. and Mourouzis, T., Solving circuit optimisation problems in cryptography and cryptanalysis, Cryptology ePrint Archive, Report 2011/475 (2011).

    • Search Google Scholar
    • Export Citation
  • [12]

    Daemen, J. and Rijmen, V., The Design of Rijndael. Springer (2002)

  • [13]

    Grosek, O., Magliveras, S., Tapuska, J. and Wei, W., Is Rijndael really independent of the field polynomial? Tatra Mountains Mathematical Publications, 33(1) (2006), 5169.

    • Search Google Scholar
    • Export Citation
  • [14]

    Kocher, P. C., Jaffe, J. and Jun, B., Differential power analysis, in: Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ′99, Springer-Verlag, London, UK, UK (1999). pp. 388397. URL http://dl.acm.org/citation.cfm?id=646764.703989

    • Search Google Scholar
    • Export Citation
  • [15]

    Mirwald, R. and Schnorr, C., The multiplicative complexity of quadratic boolean forms, Theoretical Computer Science, 102(2) (1992), 307328. DOI 10.1016/0304-3975(92)90235-8. URL http://www.sciencedirect.com/science/article/pii/0304397592902358

    • Search Google Scholar
    • Export Citation
  • [16]

    Nyberg, K., Differentially uniform mappings for cryptography, in: T. Helleseth (ed.) Advances in Cryptology – EUROCRYPT ′93, Lecture Notes in ComputerScience, vol. 765 Springer, Berlin, Heidelberg (1994), pp. 5564. DOI 10.1007/3-540-48285-7_6. URL http://dx.doi.org/10.1007/3-540-48285-7_6

    • Search Google Scholar
    • Export Citation
  • [17]

    Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C. and Ferguson, N., Twofish: A 128-bit block cipher, NIST AES Proposal, 15 (1998).

    • Search Google Scholar
    • Export Citation
  • [18]

    Wu, H., The hash function jh, submission to NIST (updated) (2009).

  • [19]

    Yarkin Doröz Aria Shahverdi, T. E. and Sunar, B., Toward practical homomorphic evaluation of block ciphers using Prince, Cryptology ePrint Archive, Report 2014/233 (2014). URL http://eprint.iacr.org/

    • Search Google Scholar
    • Export Citation
  • [20]

    Zajac, P., A new method to solve MRHS equation systems and its connection to group factorization, Journal of Mathematical Cryptology, 7(4) (2013), 279381. DOI 10.1515/jmc-2013-5012

    • Search Google Scholar
    • Export Citation
  • [21]

    Zajac, P. and Jókay, M., Multiplicative complexity of bijective 4 × 4 s-boxes, Cryptography and Communications, 6(3) (2014), 255277. DOI 10.1007/s12095-014-0100-y. URL http://dx.doi.org/10.1007/s12095-014-0100-y

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)