View More View Less
  • 1 Rudjer Boskovic Institute, Bijenicka cesta 54, 10 000 Zagreb, Croatia
  • | 2 University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia
  • | 3 Virkom d.o.o, Public Water Supply and Wastewater Services, Kralja Petra Kresimira IV 30, 33 000 Virovitica, Croatia
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Listeria monocytogenes is a bacterium widespread in the environment, which has a capacity to survive and grow under various conditions. The bacterial growth results from interactions when subjected to various temperatures, pH levels, and NaCl concentrations were examined by measurements and predictive modelling. Good correlation across the range of growth conditions was shown among observed and predicted growth values, having similar trends and minimal deflections for pH levels 5.0 and 6.0. The growth condition in the 8% NaCl concentration (pH 7.0, temperature 4 °C) resulted with a growth curve of 1 log interval greater than the fitted curve for all the measurements. In all of the cases, there were consistent increases in the rates and decreases in the lag time when the growth temperature increased. Higher incubation temperatures provided higher growth rates as 30 °C and 35 °C yielded double increase of the fitted rate. Fitted and measured growth rates for salinity conditions were significantly different (P<0.05). Comparison of doubling times showed good compatibility, particularly at lower temperatures. Critical use of a model is suggested, although it may enable microbiologists to limit the need of challenge tests and to make rapid and realistic prediction of the growth of L. monocytogenes under conditions relevant to a range of aquatic and other products examined.

  • AOAC (1990): Official Methods of Analysis of AOAC International, 15 th ed., Vol. 2, Association of Official Analytical Chemist Inc., 842, USA. Potentiometric method no. 943.02

    • Search Google Scholar
    • Export Citation
  • AUGUSTIN, J.C. & CARLIER, V. (2000): Mathematical modelling of the growth rate and lag time for Listeria monocytogenes. Int. J. Food Microbiol., 56, 2951.

    • Search Google Scholar
    • Export Citation
  • BARANYI, J., ROBERTS, T.A. & MCCLURE, P. (1993): A non-autonomous differential equation to model bacterial growth. Food Microbiol., 10, 4359.

    • Search Google Scholar
    • Export Citation
  • BARANYI, J. & ROBERTS, T.A. (1994): A dynamic approach to predict bacterial growth in food. Int. J. Food Microbiol., 23, 277294.

  • BARANYI, J., ROSS, T., MCMEEKIN, T.A. & ROBERTS, T.A. (1996): Effects of parameterization on the performance of empirical models used in “predictive microbiology”. Food Microbiol., 13, 8391.

    • Search Google Scholar
    • Export Citation
  • BEGOT, C., LEBERT, I. & LEBERT, A. (1997): Variability of the response of 66 Listeria monocytogenes and Listeria innocua strains to different growth conditions. Food Microbiol., 14, 403412.

    • Search Google Scholar
    • Export Citation
  • BUDZINSKA, K., WRONSKI, G. & SZEJNIUK, B. (2012): Survival time of bacteria Listeria monocytogenes in water environment and sewage. Polish J. Environ. Studies; 21(1), 3137.

    • Search Google Scholar
    • Export Citation
  • DUNGAN, R.S., KLEIN, M. & LEYTEM, A.B. (2012): Quantification of bacterial indicators and zoonotic pathogens in dairy wastewater ponds. Appl. Environ. Microbiol., 78(22), 80898095.

    • Search Google Scholar
    • Export Citation
  • FARBER, J.M., SANDERS, G.W. & JOHNSTON, M.A. (1989): A survey of various foods for the presence of Listeria species. J. Food Protect., 52, 456458.

    • Search Google Scholar
    • Export Citation
  • GEORGE, S.M., LUND, B.M. & BROCKLEHURST, T.F. (1988): The effect of pH and temperature on initiation of growth of Listeria monocytogenes. Lett. Appl. Microbiol., 6, 153156.

    • Search Google Scholar
    • Export Citation
  • GIFFEL, M.C. & ZWIETERING, M.H. (1999): Validation of predictive models describing the growth of Listeria monocytogenes. Int. J. Food Microbiol., 46, 135149.

    • Search Google Scholar
    • Export Citation
  • ISO (1991): General guidance for the enumeration of micro-organism — Colony count technique at 30 °C, Method no. 4833, International Organization for Standardization, 2nd ed., Geneva, Switzerland.

    • Search Google Scholar
    • Export Citation
  • MCCLURE, P.J., BEAUMONT, A.L., SUTHERLAND, J.P. & ROBERTS, T.A. (1997): Predictive modelling of growth of Listeria monocytogenes. The effects on growth of NaCl, pH, storage temperature and NaNO2. Int. J. FoodMicrobiol., 34, 221232.

    • Search Google Scholar
    • Export Citation
  • MCLAUCHLIN, J., MITCHELL, R.T., SMERDON, W.T. & JEWELL, K. (2004): Listeria monocytogenes and listeriosis: a review of hazard characterization for use in microbiological risk assessment of foods. Int. J. Food Microbiol., 94, 1533.

    • Search Google Scholar
    • Export Citation
  • MEJLHOLM, O. & DALGAARD, P. (2009): Development and validation of an extensive growth and growth boundary model for Listeria monocytogenes in lightly preserved and ready-to-eat shrimp. J. Food Protect., 10, 20282225.

    • Search Google Scholar
    • Export Citation
  • MURRAY, E.G.D., WEBB, R.A. & SWANN, M.B.R. (1926): A disease of rabbits characterized by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.). J. Pathol.Bacteriol., 29, 407439.

    • Search Google Scholar
    • Export Citation
  • PARK, S.Y., CHOI, J.W., YEON, J., LEE, M.J., CHUNG, D.H., KIM, M.G., LEE, K.H., KIM, K.S., LEE, D.H., BAHK, G.J., BAE, D.H., KIM, K.Y., KIM, C.H. & HA, S.D. (2005): Predictive modelling for the growth of Listeriamonocytogenes as a function of temperature, NaCl, and pH. Int. J. Food Microbiol., 15, 13231329.

    • Search Google Scholar
    • Export Citation
  • PETRAN, R.L. & ZOTTOLA, E.A. (1989): A study of factors affecting growth and recovery of Listeria monocytogenes Scott A. J. Food Sci., 54, 458460.

    • Search Google Scholar
    • Export Citation
  • POUILLOT, R. & LUBRAN, M.B. (2011): Predictive microbiology vs. modelling microbial growth within Listeria monocytogenes risk assessment: What parameters matter and why. Food Microbiol., 28, 720726.

    • Search Google Scholar
    • Export Citation
  • RICHARDS, F.J. (1959): A flexible growth function for empirical use. J. Exp. Bot., 10, 290300.

  • ROSS, T. & MCMEEKIN, T.A. (1994): Predictive microbiology. Int. J. Food Microbiol., 23, 241264.

  • ROSS, T., DALGAARD, P. & TIENUNGOON, S. (2000): Predictive modelling of the growth and survival of Listeria in fishery products. Int. J. Food Microbiol., 62, 231245.

    • Search Google Scholar
    • Export Citation
  • SAUDERS, B.D., OVERDEVEST, J., FORTES, E., WINDHAM, K., SCHUKKEN, Y., LEMBO, A. & WIEDMANN, M. (2012): Diversity of Listeria species in urban and natural environments. Appl. Environ. Microbiol., 78, 44204433.

    • Search Google Scholar
    • Export Citation
  • SHIMONI, E. & LABUZA, T.P. (2000): Modelling pathogen growth in meat products: future challenges. Trends Food Sci. Technol., 11, 394402.

    • Search Google Scholar
    • Export Citation
  • SKOVGAARD, N. & MORGEN, C.A. (1988): Detection of Listeria spp. in faeces from animals, in feeds, and in raw foods of animal origin. Int. J. Food Microbiol., 6, 229242.

    • Search Google Scholar
    • Export Citation
  • SZIGETI, E. & FARKAS, J. (2000): Use of conductometric technique for data capture in predictive microbiology. Acta Alimentaria, 29, 307314.

    • Search Google Scholar
    • Export Citation
  • VORSTER, S.M., GREEBE, R.P. & NORTJE, G.L. (1993): The incidence of Listeria in processed meats in South Africa. J. Food Protect., 56, 169172.

    • Search Google Scholar
    • Export Citation
  • WANG, C. & MURIANA, P.M. (1994): Incidence of Listeria monocytogenes in packages of retail franks. J. Food Protect., 57, 382386.

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 3 0 0
Jul 2021 0 0 0
Aug 2021 4 0 0
Sep 2021 2 0 0
Oct 2021 4 0 0
Nov 2021 8 0 0
Dec 2021 0 0 0