View More View Less
  • 1 Radiation Protection Bureau of Health Canada, 775 Brookfield Road, AL 6302D1, Ottawa, ON K1A 1C1, Canada
Restricted access

Abstract  

In this work, a Monte Carlo (MC) simulation model is established to accurately characterize a phoswich beta-gamma coincidence detector system. This model can be easily used to predict the beta-gamma coincidence efficiencies of xenon radioisotopes at various stable xenon concentrations in the counting cell. The results demonstrate that there is a significant inverse correlation between beta-gamma coincidence efficiency and stable xenon concentration. The influence of stable xenon concentration on beta-gamma coincidence counting efficiency has been investigated for each individual xenon radioisotope. The results indicate that the effect of stable xenon concentration on beta-gamma coincidence efficiency depends on the xenon radioisotope and its decay modes. The coincidence efficiency of 133Xe with 31.0-keV X-ray decay mode is the most affected one; and then followed by 131mXe, 133Xe with 81.0-keV gamma-ray decay mode, 133mXe and finally 135Xe. The study also indicates that the gamma absorption by xenon gas plays more of a role in the decrease of beta-gamma coincidence efficiency for 133Xe and 135Xe, and that the conversion electron spectrum shifting and broadening plays more of a role in the reduction of beta-gamma coincidence efficiency for the metastable radioxenon of 131mXe and 133mXe.

Manuscript Submission: HERE

  • Impact Factor (2019): 1.137
  • Scimago Journal Rank (2019): 0.360
  • SJR Hirsch-Index (2019): 65
  • SJR Quartile Score (2019): Q3 Analytical Chemistry
  • SJR Quartile Score (2019): Q3 Health, Toxicology and Mutagenesis
  • SJR Quartile Score (2019): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2019): Q3 Pollution
  • SJR Quartile Score (2019): Q3 Public Health, Environmental and Occupational Health
  • SJR Quartile Score (2019): Q3 Radiology, Nuclear Medicine and Imaging
  • SJR Quartile Score (2019): Q3 Spectroscopy
  • Impact Factor (2018): 1.186
  • Scimago Journal Rank (2018): 0.408
  • SJR Hirsch-Index (2018): 60
  • SJR Quartile Score (2018): Q2 Nuclear Energy and Engineering
  • SJR Quartile Score (2018): Q2 Pollution

For subscription options, please visit the website of Springer Nature.

Journal of Radionalytical and Nuclear Chemistry
Language English
Size A4
Year of
Foundation
1968
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5731 (Print)
ISSN 1588-2780 (Online)