Optimization of two-dimensional thin-layer chromatographic separation often relies on selection of the two most orthogonal chromatographic systems which best co-operate in the separation. This is mainly achieved by investigating the correlation between RF values or scoring the distances between the spots. This paper presents and discusses another approach, based on the distances to the closest spot and to the top or bottom of the plate. The theory arises from a well-known geometrical problem about equal-spreading of the points inside a unit square. Two coefficients are proposed — sensitive and insensitive to complete separation, which are the two-dimensional version of previously proposed RU and RD criteria (retention uniformity and retention distance, describing the equal-spreading of the spots in one-dimensional chromatography). They are included in the range 0–1 and their distribution as a random variable is well defined and not affected by the number of separated compounds.
[1]. G. Guiochon N. Marchettia K. Mriziqa R. Andrew Shalliker 2008 J. Chromatogr. A 1189 109.
[2]. M. Dumarey R. Put E. Van Gyseghem Y. Vander Heyden 2008 Anal. Chim. Acta 609 223.
[3]. M.A. Hawrył M. Waksmundzka-Hajnos T. Inglot 2005 J. Liq. Chromatogr. 28 2245.
[4]. H. Kalasz A. Hunyadi M. Bathori 2005 J. Liq. Chromatogr. 28 2489.
[5]. T. Tuzimski E. Soczewiński 2003 J. Planar Chromatogr. 16 263.
[6]. M. Waksmundzka-Hajnos A. Petruczynik M. Hajnos T. Tuzimski A. Hawrył A. Bogucka-Kocka 2006 J. Chromatogr. Sci. 44 510.
[7]. P. Owen A. Pendlebury A.C. Moffat 1978 J. Chromatogr. 161 187.
[8]. P. Owen A. Pendlebury A.C. Moffat 1978 J. Chromatogr. 161 195.
[9]. A.C. Moffat 1975 J. Chromatogr. 110 341.
[10]. G. Musumarra G. Scarlatta G. Cirma G. Romano S. Palazzo S. Clementi G. Giuletti 1984 J. Chromatogr. 295 31.
[11]. G. Musumarra G. Scarlatta G. Cirma G. Romano S. Palazzo S. Clementi G. Giuletti 1985 J. Chromatogr. 350 151.
[12]. M. Daszykowski M. Hawrył M. Waksmundzka-Hajnos B. Walczak 2008 Acta Chromatogr. 20 283–307.
[13]. Komsta W. Markowski G. Misztal 2007 J. Planar Chromatogr. 20 27.
[14]. R Development Core Team 2008 R: A language and environment for statistical computing R Foundation for Statistical Computing Vienna, Austria.
[15]. R. Leardi 2003 Nature-inspired methods in chemometrics: genetic algorithms and neural networks Elsevier Amsterdam.
[16]. C.B. Lucasius G. Kateman 1993 Chemom. Intell. Lab. Syst. 19 1.
[17]. C.B. Lucasius G. Kateman 1994 Chemom. Intell. Lab. Syst. 25 99.
[18]. A.C. Moffat 2004 Clarke's Analysis of Drugs and Poisons 3rd edn Pharmaceutical Press London.
[19]. H.T. Croft , K.J. Falconer, and R.K. Guy, Unsolved Problems in Geometry, Springer, 1991, p, 110.