In gravel pits, a mosaic of habitats with various environmental conditions created during mining has a great potential for persistence of many species. We focused on such a mosaic in a gravel pit surrounded by agricultural landscape. We investigated which habitats within sludge deposits in different successional stages (from bare sands to secondary forest) and agriculturally reclaimed area enhanced diversity, species richness and abundance of carabids and supported occurrence of threatened species. Since some of these habitats were extensively managed while others were invaded by the alien plant Solidago gigantea, we also tested the effect of management and the cover of S. gigantea on carabid assemblages. We found a gradient in carabid assemblages from psammophilous ones in bare sandy soils towards similar assemblages in plots with well-developed vegetation cover. Here, carabid assemblages were represented predominantly by common species of agricultural and forest lands without higher habitat requirements. Contrarily, plots with bare sand could serve as a refuge for rare psammophilous carabid species, which cannot occur in surrounding landscape due to vanished suitable habitats. Therefore, keeping some of habitats in early plant successional states is important for maintaining habitat mosaic and for persistence of such species as well. Management of grasslands and cover of S. gigantea had no effect on carabid assemblage. We presume that carabids were likely more affected by vegetation structure and density than species composition.
Altieri, M.A. 1999. The ecological role of biodiversity in agroecosystems. Agr. Ecosyst. Environ. 74: 19–31.
Baranová, B., P. Manko and T. Jászay. 2014. Differences in surface-dwelling beetles of grasslands invaded and non-invaded by goldenrods (Solidago canadensis, S. gigantea) with special reference to Carabidae. J. Insect Conserv. 18: 623–635.
Bartoń, K. 2019. MuMIn: Multi-Model Inference. https://CRAN.R-project.org/package=MuMIn (accessed 1 July 2019).
Bates, D., M. Maechler, B. Bolker and S. Walker. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67: 1–48.
Beneš, J., P. Kepka and M. Konvička. 2003. Limestone quarries as refuges for European xerophilous butterflies. Conserv. Biol. 17: 1058–1069.
Brändle, M., W. Durka and M. Altmoos. 2000. Diversity of surface dwelling beetle assemblages in open-cast lignite mines in Central Germany. Biodivers. Conserv. 9: 1297–1311.
Bretz, F., T. Hothorn and P. Westfall. 2010. Multiple Comparisons Using R. CRC Press, Boca Raton.
Burnham, K.P. and D.R. Anderson. 2002. Model Selection and Multimodel Inference: a Practical Information Theoretic Approach. Springer-Verlag, New York.
Chao, A. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43: 783–791.
Danihelka, J., J. Chrtek and Z. Kaplan. 2012. Checklist of vascular plants of the Czech Republic. Preslia 84: 647–811.
de Groot, M., D. Kleijn and N. Jogan. 2007. Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis. Biol. Conserv. 136: 612–617.
Elek, Z. and B. Tóthmérész. 2010. Carabid beetles among grassland – forest edge – beech forest habitats in Northern Hungary. Community Ecol. 11: 211–216.
Ernst, C.M. and N. Cappuccino. 2005. The effect of an invasive alien vine Vincetoxicum rossicum (Asclepiadaceae) on arthropod populations in Ontario old fields. Biol. Invasions 7: 417–425.
Eyre, M.D., M.L. Luff and J.C. Woodward. 2003. Beetles (Coleoptera) on brownfield sites in England: an important conservation resource? J. Insect Conserv. 7: 223–231.
Fanta, J. and H. Siepel. 2010. Inland Drift S and Landscapes. KNNV Publishing, Zeist, The Netherlands.
Harabiš, F. and A. Dolný. 2015. Odonates need natural disturbances: How human-induced dynamics affect the diversity of dragonfly assemblages. Freshw. Sci. 34: 1050–1057.
Heneberg, P., P. Bogusch and J. Řehounek. 2012. Sandpits provide critical refuge for bees and wasps (Hymenoptera: Apocrita). J. Insect Conserv. 17: 473–490.
Heneberg, P., P. Hesoun and J. Skuhrovec. 2016. Succession of arthropods on xerothermophilous habitats formed by sand quarrying: Epigeic beetles (Coleoptera) and orthopteroids (Orthoptera, Dermaptera and Blattodea). Ecol. Eng. 95: 340–356.
Hodeček, J., T. Kuras, J. Šipoš and A. Dolný. 2015. Post-industrial areas as successional habitats: Long-term changes of functional diversity in beetle communities. Basic Appl. Ecol. 16: 629–640.
Hodeček, J., T. Kuras, J. Šipoš and A. Dolný. 2016. Role of reclamation in the formation of functional structure of beetle communities: A different approach to restoration. Ecol. Eng. 94: 537–544.
Honěk, A. 1997. The effect of temperature on the activity density of Carabidae (Coleoptera) in fallowl and. Eur. J. Entomol. 94: 97–104.
Hothorn, T., F. Bretz and P. Westfall. 2008. Simultaneous inference in general parametric models. Biometrical J. 50: 346–363.
Humbert, J.Y., J. Ghazoul and T. Walter. 2009. Meadow harvesting and their impacts on field fauna. Agr. Ecosyst. Environ. 130: 1–8.
Hůrka, K. 1996. Carabidae of the Czech and Slovak Republics. Kabourek, Zlín.
Kašák, J., J. Foit and M. Hučín. 2017. Succession of ground beetle (Coleoptera: Carabidae) communities after windthrow disturbance in a montane Norway spruce forest in the Hrubý Jeseník Mts. (Czech Republic). Cent. Eur. For. J. 63: 180–187.
Lövei, G.L. 2005. Generalised entropy indices have a long history in ecology – a comment. Community Ecol. 6: 245–247.
Lövei, G.L. and K.D. Sunderland. 1996. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41: 231–256.
Magura T. 2002. Carabids and forest edge: spatial pattern and edge effect. Forest Ecol. Manag. 157: 23–37.
Magura, T., G.L. Lövei and B. Tóthmérész. 2017. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles. Ecol. Evol. 7: 1009–1017.
Magura, T., B. Tóthmérész and Z. Elek. 2006. Changes in carabid beetle assemblages as Norway spruce plantations age. Community Ecol. 7: 1–12.
Mauremooto, J.R., S.D. Wratten, S.P. Worner and G.L.A. Fry. 1995. Permeability of hedgerows to predatory carabid beetles. Agr. Ecosyst. Environ. 52: 141–148.
Nováková, L. and P. Šťastná. 2013a. Diversity of Carabidae in limestone quarries of South Moravia. Acta Univ. Agric. Silvic. Mendel. Brun. 61: 757–764.
Nováková, L. and P. Šťastná. 2013b. Diversity of carabid beetles (Carabidae) in quarries of P álava. Acta Univ. Agric. Silvic. Mendel. Brun. 61: 1807–1815.
Nováková, L. and P. Šťastná. 2014. Carabidae of an active limestone quarry. Acta Univ. Agric. Silvic. Mendel. Brun. 62: 185–190.
Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlin. P.R. Minchin, R. B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs and H. Wagner. 2019. vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan (accessed 1 July 2019).
Ottonetti, L., L. Tucci and G. Santini. 2006. Recolonization patterns of ants in a rehabilitated lignite mine in Central Italy: potential for the use of Mediterranean ants as indicators of restoration processes. Restor. Ecol. 14: 60–66.
Prach, K., K. Řehounková, J. Řehounek and P. Konvalinková. 2011. Ecological restoration of central European mining sites: a summary of a multi-site analysis. Landsc. Res. 36: 263–268.
Prach, K., K. Řehounková, K. Lencová, A. Jírová, P. Konvalinková, O. Mudrák, V. Student, Z. Vaněček, L. Tichý, P. Petřík, P. Šmilauer and P. Pyšek. 2014. Vegetation succession in restoration of disturbed sites in Central Europe: the direction of succession and species richness across 19 seres. Appl. Veg. Sci. 17: 193–200.
R Core Team . 2017. R: A language and environment for statistical computing. https://www.R-project.org (accessed 18 August 2017).
Rainio, J. and J. Niemelä. 2003. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 12: 487–506.
Ricotta, C. 2005. On parametric diversity indices in ecology: A historical note. Community Ecol. 6: 241–244.
Riksen, M., R. Ketner-Oostra, C. van Turnhout, M. Nijssen, D. Goossens, P.D. Jungerius and W. Spaan. 2006. Will we lose the last active inland drifts ands of WesternEurope? The origin and development of the inland drift-sand ecotype in the Netherlands. Landsc. Ecol. 21: 431–447.
Ranjha, M.H. and U. Irmler. 2014. Movement of carabids from grassy strips to crop land in organic agriculture. J. Insect Conserv. 18: 457–467.
Růžičková, J. and M. Veselý. 2018. Movement activity and habitat use of Carabus ullrichii (Coleoptera: Carabidae): The forest edge as a mating site? Entomol. Sci. 21: 76–83.
Řehounek, J., K. Řehounková, T. Tropek and K. Prach. 2015. Ekologická obnova území narušených těžbou nerostných surovin a průmyslovými deponiemi. Calla, České Budějovice [in Czech].
Řehounková, K. and K. Prach. 2008. Spontaneous vegetation succession in gravel–sand pits: a potential for restoration. Restor. Ecol. 16: 305–312.
Small, E.C., J.P. Sadler and M.G. Telfer. 2003. Carabid beetle assemblages on urban derelict sites in Birmingham, UK. J. Insect Conserv. 6: 233–246.
Schwerk, A. 2004. Changes in carabid beetle fauna (Coleoptera: Carabidae) along successional gradients in post-industrial areas in Central Pol and. Eur. J. Entomol. 111: 677–685.
Šipoš, J., J. Hodeček, T. Kuras and A. Dolný. 2017. Principal determinants of species and functional diversity of carabid beetle assemblages during succession at post-industrial sites. Bull. Entomol. Res. 107: 466–477.
Topp, W., K. Thelen and H. Kappes. 2010. Soil dumping techniques and afforestation drive ground-dwelling bee the assemblages in a 25-year-old open-cast mining reclamation area. Ecol. Eng. 36: 751–756.
Tóthmérész, B. 1995. Comparison of different methods for diversity ordering. J. Veg. Sci. 6: 283–290.
Trnka, F. and S. Rada. 2015. Grasshoppers, crickets (Orthoptera) and earwigs (Dermaptera) of Tovačov gravel pit (central Moravia, Czech Republic): New locality for several thermophilous species in anthropogenic secondary habitat. Acta Mus. Siles. Sci. Natur. 64: 199–205.
Tropek, R., T. Kadlec, P. Karesova, L. Spitzer, P. Kocarek, I. Malenovsky, P. Banar, I.H. Tuf, M. Hejda and M. Konvicka. 2010. Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants. J. Appl. Ecol. 47: 139–147.
Tropek, R. and J. Řehounek. 2011. Bezobratlí postindustriálních stanovišť: Význam, ochrana a management. Calla, České Budějovice [in Czech].
Tscharntke, T., T.A. Rand and F.J. Bianchi. 2005. The landscape context of trophic interactions: insect spillover across the cropnoncrop interface. Ann. Zool. Fenn. 42: 421–432.
Veselý, M. and B. Šarapatka. 2008. Effects of conversion to organic farming on carabid beetles (Carabidae) in experimental fields in the Czech Republic. Biol. Agric. Hortic. 25: 289–309.
Veselý, P., P. Moravec and J. Stanovský. 2017. Carabidae. In: Hejda, R., J. Farkač and K. Chobot (eds.), Red List of Threatened Species of the Czech Republic. Invertebrates. Příroda, Praha. pp. 295–301.