Authors:
J. Růžičková MTA-ELTE-MTM Ecology Research Group, Eötvös Loránd University, Biological Institute, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary

Search for other papers by J. Růžičková in
Current site
Google Scholar
PubMed
Close
and
M. Hykel Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-710 00 Slezská Ostrava, Czech Republic

Search for other papers by M. Hykel in
Current site
Google Scholar
PubMed
Close
Open access

Abstract

In gravel pits, a mosaic of habitats with various environmental conditions created during mining has a great potential for persistence of many species. We focused on such a mosaic in a gravel pit surrounded by agricultural landscape. We investigated which habitats within sludge deposits in different successional stages (from bare sands to secondary forest) and agriculturally reclaimed area enhanced diversity, species richness and abundance of carabids and supported occurrence of threatened species. Since some of these habitats were extensively managed while others were invaded by the alien plant Solidago gigantea, we also tested the effect of management and the cover of S. gigantea on carabid assemblages. We found a gradient in carabid assemblages from psammophilous ones in bare sandy soils towards similar assemblages in plots with well-developed vegetation cover. Here, carabid assemblages were represented predominantly by common species of agricultural and forest lands without higher habitat requirements. Contrarily, plots with bare sand could serve as a refuge for rare psammophilous carabid species, which cannot occur in surrounding landscape due to vanished suitable habitats. Therefore, keeping some of habitats in early plant successional states is important for maintaining habitat mosaic and for persistence of such species as well. Management of grasslands and cover of S. gigantea had no effect on carabid assemblage. We presume that carabids were likely more affected by vegetation structure and density than species composition.

Supplementary Materials

  • Altieri, M.A. 1999. The ecological role of biodiversity in agroecosystems. Agr. Ecosyst. Environ. 74: 1931.

  • Baranová, B., P. Manko and T. Jászay. 2014. Differences in surface-dwelling beetles of grasslands invaded and non-invaded by goldenrods (Solidago canadensis, S. gigantea) with special reference to Carabidae. J. Insect Conserv. 18: 623635.

    • Search Google Scholar
    • Export Citation
  • Bartoń, K. 2019. MuMIn: Multi-Model Inference. https://CRAN.R-project.org/package=MuMIn (accessed 1 July 2019).

  • Bates, D., M. Maechler, B. Bolker and S. Walker. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67: 148.

  • Beneš, J., P. Kepka and M. Konvička. 2003. Limestone quarries as refuges for European xerophilous butterflies. Conserv. Biol. 17: 10581069.

    • Search Google Scholar
    • Export Citation
  • Brändle, M., W. Durka and M. Altmoos. 2000. Diversity of surface dwelling beetle assemblages in open-cast lignite mines in Central Germany. Biodivers. Conserv. 9: 12971311.

    • Search Google Scholar
    • Export Citation
  • Bretz, F., T. Hothorn and P. Westfall. 2010. Multiple Comparisons Using R. CRC Press, Boca Raton.

  • Burnham, K.P. and D.R. Anderson. 2002. Model Selection and Multimodel Inference: a Practical Information Theoretic Approach. Springer-Verlag, New York.

    • Search Google Scholar
    • Export Citation
  • Chao, A. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43: 783791.

  • Danihelka, J., J. Chrtek and Z. Kaplan. 2012. Checklist of vascular plants of the Czech Republic. Preslia 84: 647811.

  • de Groot, M., D. Kleijn and N. Jogan. 2007. Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis. Biol. Conserv. 136: 612617.

    • Search Google Scholar
    • Export Citation
  • Elek, Z. and B. Tóthmérész. 2010. Carabid beetles among grassland – forest edge – beech forest habitats in Northern Hungary. Community Ecol. 11: 211216.

    • Search Google Scholar
    • Export Citation
  • Ernst, C.M. and N. Cappuccino. 2005. The effect of an invasive alien vine Vincetoxicum rossicum (Asclepiadaceae) on arthropod populations in Ontario old fields. Biol. Invasions 7: 417425.

    • Search Google Scholar
    • Export Citation
  • Eyre, M.D., M.L. Luff and J.C. Woodward. 2003. Beetles (Coleoptera) on brownfield sites in England: an important conservation resource? J. Insect Conserv. 7: 223231.

    • Search Google Scholar
    • Export Citation
  • Fanta, J. and H. Siepel. 2010. Inland Drift S and Landscapes. KNNV Publishing, Zeist, The Netherlands.

  • Harabiš, F. and A. Dolný. 2015. Odonates need natural disturbances: How human-induced dynamics affect the diversity of dragonfly assemblages. Freshw. Sci. 34: 10501057.

    • Search Google Scholar
    • Export Citation
  • Heneberg, P., P. Bogusch and J. Řehounek. 2012. Sandpits provide critical refuge for bees and wasps (Hymenoptera: Apocrita). J. Insect Conserv. 17: 473490.

    • Search Google Scholar
    • Export Citation
  • Heneberg, P., P. Hesoun and J. Skuhrovec. 2016. Succession of arthropods on xerothermophilous habitats formed by sand quarrying: Epigeic beetles (Coleoptera) and orthopteroids (Orthoptera, Dermaptera and Blattodea). Ecol. Eng. 95: 340356.

    • Search Google Scholar
    • Export Citation
  • Hodeček, J., T. Kuras, J. Šipoš and A. Dolný. 2015. Post-industrial areas as successional habitats: Long-term changes of functional diversity in beetle communities. Basic Appl. Ecol. 16: 629640.

    • Search Google Scholar
    • Export Citation
  • Hodeček, J., T. Kuras, J. Šipoš and A. Dolný. 2016. Role of reclamation in the formation of functional structure of beetle communities: A different approach to restoration. Ecol. Eng. 94: 537544.

    • Search Google Scholar
    • Export Citation
  • Honěk, A. 1997. The effect of temperature on the activity density of Carabidae (Coleoptera) in fallowl and. Eur. J. Entomol. 94: 97104.

    • Search Google Scholar
    • Export Citation
  • Hothorn, T., F. Bretz and P. Westfall. 2008. Simultaneous inference in general parametric models. Biometrical J. 50: 346363.

  • Humbert, J.Y., J. Ghazoul and T. Walter. 2009. Meadow harvesting and their impacts on field fauna. Agr. Ecosyst. Environ. 130: 18.

  • Hůrka, K. 1996. Carabidae of the Czech and Slovak Republics. Kabourek, Zlín.

  • Kašák, J., J. Foit and M. Hučín. 2017. Succession of ground beetle (Coleoptera: Carabidae) communities after windthrow disturbance in a montane Norway spruce forest in the Hrubý Jeseník Mts. (Czech Republic). Cent. Eur. For. J. 63: 180187.

    • Search Google Scholar
    • Export Citation
  • Lövei, G.L. 2005. Generalised entropy indices have a long history in ecology – a comment. Community Ecol. 6: 245247.

  • Lövei, G.L. and K.D. Sunderland. 1996. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41: 231256.

    • Search Google Scholar
    • Export Citation
  • Magura T. 2002. Carabids and forest edge: spatial pattern and edge effect. Forest Ecol. Manag. 157: 2337.

  • Magura, T., G.L. Lövei and B. Tóthmérész. 2017. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles. Ecol. Evol. 7: 10091017.

    • Search Google Scholar
    • Export Citation
  • Magura, T., B. Tóthmérész and Z. Elek. 2006. Changes in carabid beetle assemblages as Norway spruce plantations age. Community Ecol. 7: 112.

    • Search Google Scholar
    • Export Citation
  • Mauremooto, J.R., S.D. Wratten, S.P. Worner and G.L.A. Fry. 1995. Permeability of hedgerows to predatory carabid beetles. Agr. Ecosyst. Environ. 52: 141148.

    • Search Google Scholar
    • Export Citation
  • Nováková, L. and P. Šťastná. 2013a. Diversity of Carabidae in limestone quarries of South Moravia. Acta Univ. Agric. Silvic. Mendel. Brun. 61: 757764.

    • Search Google Scholar
    • Export Citation
  • Nováková, L. and P. Šťastná. 2013b. Diversity of carabid beetles (Carabidae) in quarries of P álava. Acta Univ. Agric. Silvic. Mendel. Brun. 61: 18071815.

    • Search Google Scholar
    • Export Citation
  • Nováková, L. and P. Šťastná. 2014. Carabidae of an active limestone quarry. Acta Univ. Agric. Silvic. Mendel. Brun. 62: 185190.

  • Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlin. P.R. Minchin, R. B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs and H. Wagner. 2019. vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan (accessed 1 July 2019).

    • Search Google Scholar
    • Export Citation
  • Ottonetti, L., L. Tucci and G. Santini. 2006. Recolonization patterns of ants in a rehabilitated lignite mine in Central Italy: potential for the use of Mediterranean ants as indicators of restoration processes. Restor. Ecol. 14: 6066.

    • Search Google Scholar
    • Export Citation
  • Prach, K., K. Řehounková, J. Řehounek and P. Konvalinková. 2011. Ecological restoration of central European mining sites: a summary of a multi-site analysis. Landsc. Res. 36: 263268.

    • Search Google Scholar
    • Export Citation
  • Prach, K., K. Řehounková, K. Lencová, A. Jírová, P. Konvalinková, O. Mudrák, V. Student, Z. Vaněček, L. Tichý, P. Petřík, P. Šmilauer and P. Pyšek. 2014. Vegetation succession in restoration of disturbed sites in Central Europe: the direction of succession and species richness across 19 seres. Appl. Veg. Sci. 17: 193200.

    • Search Google Scholar
    • Export Citation
  • R Core Team . 2017. R: A language and environment for statistical computing. https://www.R-project.org (accessed 18 August 2017).

  • Rainio, J. and J. Niemelä. 2003. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 12: 487506.

  • Ricotta, C. 2005. On parametric diversity indices in ecology: A historical note. Community Ecol. 6: 241244.

  • Riksen, M., R. Ketner-Oostra, C. van Turnhout, M. Nijssen, D. Goossens, P.D. Jungerius and W. Spaan. 2006. Will we lose the last active inland drifts ands of WesternEurope? The origin and development of the inland drift-sand ecotype in the Netherlands. Landsc. Ecol. 21: 431447.

    • Search Google Scholar
    • Export Citation
  • Ranjha, M.H. and U. Irmler. 2014. Movement of carabids from grassy strips to crop land in organic agriculture. J. Insect Conserv. 18: 457467.

    • Search Google Scholar
    • Export Citation
  • Růžičková, J. and M. Veselý. 2018. Movement activity and habitat use of Carabus ullrichii (Coleoptera: Carabidae): The forest edge as a mating site? Entomol. Sci. 21: 7683.

    • Search Google Scholar
    • Export Citation
  • Řehounek, J., K. Řehounková, T. Tropek and K. Prach. 2015. Ekologická obnova území narušených těžbou nerostných surovin a průmyslovými deponiemi. Calla, České Budějovice [in Czech].

    • Search Google Scholar
    • Export Citation
  • Řehounková, K. and K. Prach. 2008. Spontaneous vegetation succession in gravel–sand pits: a potential for restoration. Restor. Ecol. 16: 305312.

    • Search Google Scholar
    • Export Citation
  • Small, E.C., J.P. Sadler and M.G. Telfer. 2003. Carabid beetle assemblages on urban derelict sites in Birmingham, UK. J. Insect Conserv. 6: 233246.

    • Search Google Scholar
    • Export Citation
  • Schwerk, A. 2004. Changes in carabid beetle fauna (Coleoptera: Carabidae) along successional gradients in post-industrial areas in Central Pol and. Eur. J. Entomol. 111: 677685.

    • Search Google Scholar
    • Export Citation
  • Šipoš, J., J. Hodeček, T. Kuras and A. Dolný. 2017. Principal determinants of species and functional diversity of carabid beetle assemblages during succession at post-industrial sites. Bull. Entomol. Res. 107: 466477.

    • Search Google Scholar
    • Export Citation
  • Topp, W., K. Thelen and H. Kappes. 2010. Soil dumping techniques and afforestation drive ground-dwelling bee the assemblages in a 25-year-old open-cast mining reclamation area. Ecol. Eng. 36: 751756.

    • Search Google Scholar
    • Export Citation
  • Tóthmérész, B. 1995. Comparison of different methods for diversity ordering. J. Veg. Sci. 6: 283290.

  • Trnka, F. and S. Rada. 2015. Grasshoppers, crickets (Orthoptera) and earwigs (Dermaptera) of Tovačov gravel pit (central Moravia, Czech Republic): New locality for several thermophilous species in anthropogenic secondary habitat. Acta Mus. Siles. Sci. Natur. 64: 199205.

    • Search Google Scholar
    • Export Citation
  • Tropek, R., T. Kadlec, P. Karesova, L. Spitzer, P. Kocarek, I. Malenovsky, P. Banar, I.H. Tuf, M. Hejda and M. Konvicka. 2010. Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants. J. Appl. Ecol. 47: 139147.

    • Search Google Scholar
    • Export Citation
  • Tropek, R. and J. Řehounek. 2011. Bezobratlí postindustriálních stanovišť: Význam, ochrana a management. Calla, České Budějovice [in Czech].

    • Search Google Scholar
    • Export Citation
  • Tscharntke, T., T.A. Rand and F.J. Bianchi. 2005. The landscape context of trophic interactions: insect spillover across the cropnoncrop interface. Ann. Zool. Fenn. 42: 421432.

    • Search Google Scholar
    • Export Citation
  • Veselý, M. and B. Šarapatka. 2008. Effects of conversion to organic farming on carabid beetles (Carabidae) in experimental fields in the Czech Republic. Biol. Agric. Hortic. 25: 289309.

    • Search Google Scholar
    • Export Citation
  • Veselý, P., P. Moravec and J. Stanovský. 2017. Carabidae. In: Hejda, R., J. Farkač and K. Chobot (eds.), Red List of Threatened Species of the Czech Republic. Invertebrates. Příroda, Praha. pp. 295301.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Community Ecology
Language English
Size A4
Year of
Foundation
2000
Volumes
per Year
1
Issues
per Year
3
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)