Lyme borreliosis, caused by the spirochete Borrelia burgdorferi sensu lato, has grown into a major public health problem. We recently identified a novel morphological form of B. burgdorferi, called biofilm, a structure that is well known to be highly resistant to antibiotics. However, there is no evidence of the existence of Borrelia biofilm in vivo; therefore, the main goal of this study was to determine the presence of Borrelia biofilm in infected human skin tissues. Archived skin biopsy tissues from borrelial lymphocytomas (BL) were reexamined for the presence of B. burgdorferi sensu lato using Borrelia-specific immunohistochemical staining (IHC), fluorescent in situ hybridization, combined fluorescent in situ hybridization (FISH)–IHC, polymerase chain reaction (PCR), and fluorescent and atomic force microscopy methods. Our morphological and histological analyses showed that significant amounts of Borrelia-positive spirochetes and aggregates exist in the BL tissues. Analyzing structures positive for Borrelia showed that aggregates, but not spirochetes, expressed biofilm markers such as protective layers of different mucopolysaccharides, especially alginate. Atomic force microscopy revealed additional hallmark biofilm features of the Borrelia/alginate-positive aggregates such as inside channels and surface protrusions. In summary, this is the first study that demonstrates the presence of Borrelia biofilm in human infected skin tissues.
Barbour AG , Hayes SF: Biology of Borrelia species. Microbiol Rev 50, 381–400 (1986)
Mead, PS : Epidemiology of Lyme Disease. Infect Dis Clin North Am 29, 187–210 (2015)
Liegner KB , Shapiro JR, Ramsay D, Halperin AJ, Hogrefe W, Kong L: Recurrent erythema migrans despite extended antibiotic treatment with minocycline in a patient with persisting Borrelia burgdorferi infection. J Am Acad Dermatol 28, 312–314 (1993)
Dumler JS : Molecular diagnosis of Lyme disease: review and meta-analysis. Mol Diagn 6, 1–11 (2001)
Klempner MS , Baker PJ, Shapiro ED, Marques A, Dattwyler RJ, Halperin JJ, Wormser GP: Treatment trials for postlyme disease symptoms revisited. Am J Med 126, 665–669 (2013)
Steere AC , Angelis, SM: Therapy for Lyme arthritis: Strategies for the treatment of antibiotic-refractory arthritis. Arthritis Rheum 54, 3079–3086 (2006)
Berndtson K : Review of evidence for immune evasion and persistent infection in Lyme disease. Int J Gen Med 6, 291–306 (2013)
Kurtti TJ , Munderloh, UG, Johnson RC, Ahlstrand GG: Colony formation and morphology in Borrelia burgdorferi. J Clin Microbiol 25, 2054–2058 (1987)
Mursic VP , Wanner G, Reinhardt S, Wilske B, Busch U, Marget W: Formation and cultivation of Borrelia burgdorferi spheroplast-L-form variants. Infection 24, 218–226 (1996)
Brorson O , Brorson SH: In vitro conversion of Borrelia burgdorferi to cystic forms in spinal fluid, and transformation to mobile spirochetes by incubation in BSK-H medium. Infection 26, 144–150 (1998)
Hampp EG : Further studies on the significance of spirochetal granules. J Bacteriol 62, 347–349 (1951)
Alban PS , Johnson PW, Nelson DR: Serum-starvation-induced changes in protein synthesis and morphology of Borrelia burgdorferi. Microbiology 146, 119–127 (2000)
Gruntar I , Malovrh T, Murgia R, Cinco M: Conversion of Borrelia garinii cystic forms to motile spirochetes in vivo. APMIS 109, 383–388 (2001)
Murgia R , Cinco M: Induction of cystic forms by different stress conditions in Borrelia burgdorferi. APMIS 112, 57–62 (2004)
Brorson Ø , Brorson SH: An in vitro study of the susceptibility of mobile and cystic forms of Borrelia burgdorferi to tinidazole. Int Microbiol 7, 139–42 (2004)
MacDonald AB : Spirochetal cyst forms in neurodegenerative disorders,…hiding in plain sight. Med Hypotheses 67, 819–832 (2006)
Miklossy J , Kasas S, Zurn AD, McCall S, Yu S, McGeer PL: Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J Neuroinflammation 5, 1–18 (2008)
Kersten A , Poitschek C, Rauch S, Aberer E: Effects of penicillin, ceftriaxone, and doxycycline on morphology of Borrelia burgdorferi. Antimicrob Agents Chemother 39, 1127–1133 (1995)
Brorson Ø , Brorson S-H, S cythes J, MacAllister J, Wier A, Margulis L: Destruction of spirochete Borrelia burgdorferi round-body propagules (RBs) by the antibiotic tigecycline. Proc Natl Acad Sci 106, 18656–18661 (2009)
Sapi E , Kaur N, Anyanwu S, Luecke DF, Datar A, Patel S, Rossi M, Stricker RB: Evaluation of in vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect Drug Resist 4, 97–113 (2011)
Feng J , Wang T, Shi W, Zhang S, Sullivan D, Auwaerter PG Zhang Y: Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library. Emerg Microbes Infect 3, e49 (2014)
Feng J , Auwaerter PG, Zhang Y: Drug combinations against Borrelia burgdorferi persisters in vitro: eradication achieved by using daptomycin, cefoperazone and doxycycline. PLoS One 10, 1–15 (2015)
Straubinger RK , Summers, BA, Chang YF, Appel MJ: Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J Clin Microbiol 35, 111–116 (1997)
Hodzic E , Feng S, Holden K, Freet KJ, Barthold SW: Persistence of Borrelia burgdorferi following antibiotic treatment in mice. Antimicrob Agents Chemother 52, 1728–1736 (2008)
Barthold SW , Hodzic E, Imai DM, Feng S, Yang S, Luft BJ: Ineffectiveness of tigecycline against persistent Borrelia burgdorferi. Antimicrob Agents Chemother 54, 643–651 (2010)
Embers ME , Barthold SW, Borda JT, Bowers L, Doyle L, Hodzic E, Jacobs MB, Hasenkampf NR, Martin DS, Narasimhan S, Phillippi-Falkenstein KM, Purcell JE, Ratterree MS, Philipp MT: Persistence of Borrelia burgdorferi in rhesus macaques following antibiotic treatment of disseminated infection. PLoS One 7, e29914 (2012)
Hodzic E , Imai D, Feng S, Barthold SW: Resurgence of persisting non-cultivable Borrelia burgdorferi following antibiotic treatment in mice. PLoS One 23, 1–11 (2014)
Costerton, JW , Stewart, PS, Greenberg, EP: Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999)
Donlan RM , Costerton JW: Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15, 167–93 (2002)
Sapi E , Bastian SL, Mpoy CM, Scott S, Rattelle A, Pabbati N, Poruri A, Burugu D, Theophilus PA, Pham TV, Datar A, Dhaliwal NK, MacDonald A, Rossi MJ, Sinha SK, Luecke DF: Characterization of biofilm formation by Borrelia burgdorferiin vitro. PLoS One 7, e48277 (2012)
Fitzpatrick F , Humphreys H, O’Gara JP: Environmental regulation of biofilm development in methicillin-resistant and methicillin-susceptible Staphylococcus aureus clinical isolates. J Hosp Infect 62, 120–122 (2006)
Dordel J , Kim C, Chung M, Pardos de la Gándara M, Holden MT, Parkhill J, de Lencastre H, Bentley SD, Tomasz A: Novel determinants of antibiotic resistance: identification of mutated loci in highly methicillin-resistant subpopulations of methicillin-resistant Staphylococcus aureus. MBio 5, e01000 (2014)
Clementi, F : Alginate production by Azotobacter vinelandii. Crit Rev Biotechnol 17, 327–361 (1997)
Hentzer M , Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR: Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183, 5395–5401 (2001)
Branda SS , Vik Å, Friedman L, Kolter R: Biofilms: the matrix revisited. Trends Microbiol 13, 20–26 (2005)
Allesen-Holm M , Barken KB, Yang L, Klausen M, Webb JS, Kjelleber S, Molin S, Givskov M, Tolker-Nielsen T: A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59, 1114–1128 (2006)
Ristow P , Bourhy P, Kerneis S, Schmitt C, Prevost MC, Lilenbaum W, Picardeau M: Biofilm formation by saprophytic and pathogenic leptospires. Microbiology 154, 1309–1317 (2008)
Timmaraju VA , Theophilus PAS, Balasubramanian K, Shakih S, Luecke DF, Sapi E: Biofilm formation by Borrelia sensu lato. FEMS Microbiol Lett 362, fnv120 (2015)
Remminghorst U , Rehm BHA: Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28, 1701–1712 (2006)
Sharma B , Brown A V., Matluck NE, Hu LT, Lewis K: Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persister cells. Antimicrob Agents Chemother 59, 4616–4624 (2015)
Eisendle K , Grabner T, Zelger B: Focus floating microscopy: “Gold Standard” for cutaneous Borreliosis? Am J Clin Pathol 127, 213–222 (2007)
Eisendle K , Zelger B: The expanding spectrum of cutaneous borreliosis. G Ital Dermatol Venereol 144, 157–171 (2009)
Duray P , Kusnitz A, Ryan J: Demonstration of the Lyme disease spirochete by a modified Dieterle stain method. Lab Med 16: 685–687 (1985)
Schüler W , Bunikis I, Weber-Lehman J, Comstedt P, Kutschan-Bunikis S, Stanek G, Huber J, Meinke A, Bergström S, Lundberg U: Complete genome sequence of Borrelia afzelii K78 and comparative genome analysis. PLoS One 10, e0120548 (2015)
Høiby N , Ciofu O, Bjarnsholt T: Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5, 1663–1674 (2010)
Stapper AP : Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol 53, 679–690. (2004)
Aspe M , Jensen L: The role of alginate and extracellular DNA in biofilm-meditated Pseudomonas aeruginosa gentamicin resistance. J Exp Microbiol Immunol 16, 42–48. (2012)
Wormser JP , Nadelman RB, Schwartz I: The amber theory of Lyme arthritis: initial description and clinical implications. Clin Rheumatol 31, 989–994 (2012)
Bockenstedt, LK, Gonzales DG, Haberman AM, Belperron AA: Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy. J Clin Invest 122, 2652–2660 (2012)
Lynch JF , Lappin-Scott HM, Costerton JW (2003): Microbial Biofilms, Cambridge University Press, Cambridge, UK
Ehrlich GD , DeMeo PJ, Costerton JW, Winkler H (eds.): Culture negative orthopedic biofilm infections. In: Springer Series on Biofilms, Springer-Yerlag, Berlin Heidelberg, pp. 1–28
Baddour LM , Freeman WK, Suri RM, Wilson WR (2014): Cardiovascular infections. In: Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, eds. Mann DL, Zipes DP, Libby P, Bonow RO, Braunwald E, Elsevier Saunders: Philadelphia, PA, Chapter 64
Singh R , Stine OC, Smith DL, Spitznagel JK Labib ME, Williams HN: Microbial diversity of biofilms in dental unit water systems. Appl Environ Microbiol 69, 3412–3420 (2003)
Vesey PM : Genetic analysis of Treponema denticola ATCC 35405 biofilm formation. Microbiology 150, 2401–2407 (2004)
Balasubramanian K : Evidence for the presence of Borrelia burgdorferi biofilm in infected human and mouse tissues. Master Thesis. University of New Haven, Department of Biology and Environmental Science (2015)
Stevenson B , Babb K: LuxS-mediated quorum sensing in Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 70, 4099–4105 (2002)
Mpoy CM : Expression profile of quorum sensing biomarkers during biofilm development of Borrelia burgdorferi. Master Thesis. University of New Haven, Department of Biology and Environmental Science (2012)