Authors:
András Kovács Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich, Germany

Search for other papers by András Kovács in
Current site
Google Scholar
PubMed
Close
,
Zi-An Li Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, D-48047 Duisburg, Germany

Search for other papers by Zi-An Li in
Current site
Google Scholar
PubMed
Close
,
Kiyou Shibata RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan

Search for other papers by Kiyou Shibata in
Current site
Google Scholar
PubMed
Close
, and
Rafal E. Dunin-Borkowski Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich, Germany

Search for other papers by Rafal E. Dunin-Borkowski in
Current site
Google Scholar
PubMed
Close
Open access

Magnetic skyrmions are vortex-like spin structures that are of great interest scientifically and for applications in low-power magnetic memories. The nanometer size and complex spin structure require high-resolution and quantitative experimental methods to study the physical properties of skyrmions. Here, we illustrate how Lorentz TEM and off-axis electron holography can be used to study the spin textures of magnetic skyrmions in the noncentrosymmetric B20-type helimagnet FeGe as a function of temperature and applied magnetic field. By reversing the magnetic field inside the microscope, the switching mechanism of the skyrmion lattice at 240 K is followed, showing a transition of the skyrmion lattice to the helical structure before the anti-skyrmion lattice is formed.

  • 1.

    Kiselev NS , Bogdanov AN, Schäfer R, Rössler UK: Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? J Phys, D Appl Phys 44, 392001 (2011)

    • Search Google Scholar
    • Export Citation
  • 2.

    Mühlbauer S , Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P: Skyrmion lattice in a chiral magnet. Science 323, 915 (2009)

    • Search Google Scholar
    • Export Citation
  • 3.

    Yu XZ , Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y: Real-space observation of a twodimensional skyrmion crystal. Nature 465, 901 (2010)

    • Search Google Scholar
    • Export Citation
  • 4.

    Yu XZ , Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiiwata S, Matsui Y, Tokura Y: Near room temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater 10, 106 (2011)

    • Search Google Scholar
    • Export Citation
  • 5.

    Shibata K , Yu XZ, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y: Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling. Nat Nanotechnol 8, 723 (2013)

    • Search Google Scholar
    • Export Citation
  • 6.

    Dzyaloshinsky I : Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. J Phys Chem Solids 4, 241 (1958)

  • 7.

    Moriya T : Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev 120, 91 (1960)

  • 8.

    Heinze S , von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S: Spontaneous atomicscale magnetic skyrmion lattice in two dimensions. Nat Phys 7, 713 (2011)

    • Search Google Scholar
    • Export Citation
  • 9.

    Woo S , Litzius K, Krüger B, Im MY, Caretta L, Richter K, Mann M, Krone A, Reeve RM, Weigand M, Agrawal P, Lemesh I, Mawass MA, Fischer P, Kläui M, Beach GSD: Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat Mater 15, 501 (2016)

    • Search Google Scholar
    • Export Citation
  • 10.

    Kézsmárki I , Bordács S, Milde P, Neuber E, Eng LM, White JS, Rønnow HM, Dewhurst CD, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V, Loidl A: Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat Mater 14, 1116 (2015)

    • Search Google Scholar
    • Export Citation
  • 11.

    Rajeswari J , Huang P, Mancini GF, Murooka Y, Latychevskaia T, McGrouther D, Cantoni M, Baldini E, White JS, Magrez A, Giamarchi T, Rønnow HM, Carbone F: Filming the formation and fluctuation of skyrmion domains by cryo- Lorentz transmission electron microscopy. Proc Natl Acad Sci 112, 14212 (2015)

    • Search Google Scholar
    • Export Citation
  • 12.

    Shibata K , Iwasaki J, Kanazawa N, Aizawa S, Tanigaki T, Shirai M, Nakajima T, Kubota M, Kawasaki M, Park HS, Shindo D, Nagaosa N, Tokura Y: Large anisotropic deformation of skyrmions in strained crystal. Nat Nanotechnol 10, 589 (2015)

    • Search Google Scholar
    • Export Citation
  • 13.

    Du H , Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M: Edge mediated skyrmion chain and its collective dynamics in a confined geometry. Nat Commun 6, 8504 (2015)

    • Search Google Scholar
    • Export Citation
  • 14.

    Park HS , Yu X, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y: Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. Nat Nanotechnol 9, 337 (2014)

    • Search Google Scholar
    • Export Citation
  • 15.

    Boothroyd C , Kovács A, Tillmann K: FEI Titan G2 60-300 HOLO. J Large-Scale Facil 2, A44 (2016)

  • 16.

    Saxton WO , Pitt TJ, Horner M: Digital image processing: the Semper system. Ultramicroscopy 4, 343 (1979)

  • 17.

    Morikawa D , Shibata K, Kanazawa N, Yu XZ, Tokura Y: Phys Rev B 88, 024408 (2013)

  • 18.

    Tegue MR : Deterministic phase retrieval: a Green’s function solution. J Opt Soc Am 73, 1434 (1983)

  • 19.

    Ishizuka K , Allman B: Phase measurement of atomic resolution imaging using transport of intensity equation. J Electron Microsc 54, 191 (2005)

    • Search Google Scholar
    • Export Citation
  • 20.

    Phatak C , Petford-Long AK, De Graef M: Recent advances in Lorentz microscopy. Curr Opin Solid State Mater Sci 20, 107 (2016)

  • 21.

    Cowley JM : Twenty forms of electron holography. Ultramicroscopy 41, 335 (1992)

  • 22.

    Tanigaki T , Harada K, Murakami Y, Niitsu K, Akashi T, Takahashi Y, Sugawara A, Shindo D: New trend in electron holography. J Phys, D Appl Phys 49, 244001 (2016)

    • Search Google Scholar
    • Export Citation
  • 23.

    McCartney MR , Smith DJ: Electron holography: phase imaging with nanometer resolution. Annu Rev Mater Res 37, 729 (2007)

  • 24.

    Lichte H , Lehmann M: Electron holography — basics and applications. Rep Prog Phys 71, 016102 (2008)

  • 25.

    Dunin-Borkowski RE , McCartney MR, Smith DJ: Electron holography of nanostructured materials. Encycl Nanosci Nanotechnol 3, 41 (2004)

  • 26.

    Shibata K , Kovács A, Kanazawa N, Dunin-Borkowski RE, Tokura Y: Temperature and magnetic field dependence of the internal and lattice structures of skyrmions by off-axis electron holography. submitted, arXiv:1606.05723

    • Search Google Scholar
    • Export Citation
  • 27.

    Rybakov FN , Borisov AB, Bogdanov AN: Three-dimensional skyrmion states in thin films of cubic helimagnets. Phys Rev B 87, 094424 (2013)

  • Collapse
  • Expand
  • Top

 

 

Author Guidelines are available in PDF format.
An Article Template can be downloaded from HERE.

 

 

Senior editors

Editor(s)-in-Chief: Béla Pécz

Managing Editor(s): Katalin Balázsi

Co-Editor-in-Chief: Rafal Dunin-Borkowski
(for theory and microscopy techniques)

Co-Editor-in-Chief: Pavel Hozak
(for biomedical sciences)

Editorial Board

  • Filippo Giannazzo - Consiglio Nazionale delle Ricerche (CNR), Institute for Microelectronics and Microsystems (IMM), Catania, Italy
  • Werner Grogger - FELMI, Graz University of Technology, Graz, Austria
  • János Lábár - Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungary
  • Erik Manders - Faculty of Science, SILS, University of Amsterdam, Amsterdam, The Netherlands
  • Ohad Medalia - Department of Biochemistry, Zürich University, Zürich, Switzerland
  • Péter Németh - Institute for Geological and Geochemical Research, Budapest, Hungary
  • Rainer Pepperkok - EMBL, Heidelberg, Germany
  • Aleksander Recnik - J. Stefan Institute, Ljubljana, Slovenia
  • Sara Sandin - Division of Structural Biology & Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore
  • Nobuo Tanaka - Electron microscope Lab., Ecotopia Science Institute and Dept. of Applied Physics, Nagoya University, Japan
  • Paul Verkade - Wolfson Bioimaging Facility, Schools of Biochemistry and Physiology & Pharmacology, Biomedical Sciences Building, University of Bristol, Bristol, UK

Dr Pécz, Béla
Resolution and Discovery
Institute of Technical Physics and Materials Science
Centre for Energy Research
H-1525 Budapest, PO Box 49, Hungary
E-mail: pecz.bela@ek-cer.hu

Indexing and Abstracting Services:

  • DOAJ

 

 

2020  
CrossRef Documents 3
WoS Cites 7
Wos H-index 2
Days from submission to acceptance 122
Days from acceptance to publication 121
Acceptance Rate 38%

2019  
WoS
Cites
6
CrossRef
Documents
5
Acceptance
Rate
17%

 

Resolution and Discovery
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none
Subscription Information Gold Open Access

Resolution and Discovery
Language English
Size A4
Year of
Foundation
2015
Volumes
per Year
1
Issues
per Year
 
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-8707 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2022 0 7 7
May 2022 0 5 1
Jun 2022 0 2 3
Jul 2022 0 14 12
Aug 2022 0 11 13
Sep 2022 0 4 2
Oct 2022 0 4 2