A kannabidiol kannabinoid- és szerotoninreceptor-antagonista, de a rimonabantra jellemző depresszív, illetve csökkent inzulinérzékenység mellékhatásoktól mentesen mérsékelheti a hiperfágiát. Emellett, mint a peroxiszómaproliferátor-aktivált receptor-gamma-agonisták, segítheti az adipocyták differenciálódását. A kannabidiol immunmoduláns hatása miatt mérsékelheti a magas glükózszint indukálta atherosclerosis progresszióját. A metabolikus szindróma legveszélyesebb szövődményével, az elzáródásos kórképekkel szemben is hatásos. A kannabidiol gyenge receptorkötődése révén csak az adjuváns terápia része lehet. A citokróm P450 enzimrendszert gátló hatása szintén óvatosságra int, azonban a kannabidiol kiegészítő alkalmazása gyenge mellékhatásprofilja miatt hasznossá válhat. Orv. Hetil., 2012, 153, 499–504.
Mechoulam, R., Shvo, Y.: Hashish. I. The structure of cannabidiol. Tetrahedron, 1963, 19, 2073–2078.
Shvo Y. , 'Hashish. I. The structure of cannabidiol ' (1963 ) 19 Tetrahedron : 2073 -2078 .
Taura, F., Morimoto, S., Shoyama, Y.: Purification and characterization of cannabidiolic-acid synthase from cannabis sativa L. J. Biol. Chem., 1996, 271, 17411–17416.
Shoyama Y. , 'Purification and characterization of cannabidiolic-acid synthase from cannabis sativa L ' (1996 ) 271 J. Biol. Chem. : 17411 -17416 .
Izzo, A. A., Borrelli, F., Capasso, R., et al.: Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol. Sci., 2009, 30, 515–527.
Capasso R. , 'Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb ' (2009 ) 30 Trends Pharmacol. Sci. : 515 -527 .
Thomas, A., Baillie, G. L., Phillips, A. M., et al.: Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br. J. Pharmacol., 2007, 150, 613–623.
Phillips A. M. , 'Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro ' (2007 ) 150 Br. J. Pharmacol. : 613 -623 .
Long, L. E., Malone, D. T., Taylor, D. A.: Cannabidiol reverses MK-801-induced disruption of prepulse inhibition in mice. Neuropsychopharmacology, 2006, 31, 795–803.
Taylor D. A. , 'Cannabidiol reverses MK-801-induced disruption of prepulse inhibition in mice ' (2006 ) 31 Neuropsychopharmacology : 795 -803 .
De Petrocellis, L., Vellani, V., Schiano-Moriello, A., et al.: Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. J. Pharmacol. Exp. Ther., 2008, 325, 1007–1015.
Schiano-Moriello A. , 'Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8 ' (2008 ) 325 J. Pharmacol. Exp. Ther. : 1007 -1015 .
Yamaori, S., Kushihara, M., Yamamoto, I., et al.: Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes. Biochem. Pharmacol., 2010, 79, 1691–1698.
Yamamoto I. , 'Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes ' (2010 ) 79 Biochem. Pharmacol. : 1691 -1698 .
Motaghedi, R., McGraw, T. E.: The CB1 endocannabinoid system modulates adipocyte insulin sensitivity. Obesity, 2008, 16, 1727–1734.
McGraw T. E. , 'The CB1 endocannabinoid system modulates adipocyte insulin sensitivity ' (2008 ) 16 Obesity : 1727 -1734 .
Maes, M., Galecki, P., Chang, Y. S., et al.: A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35, 676–692.
Chang Y. S. , 'A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness ' (2011 ) 35 Prog. Neuropsychopharmacol. Biol. Psychiatry : 676 -692 .
Costa, B., Trovato, A. E., Comelli, F., et al.: The non-psychoactive cannabis constituent cannabidiol is an orally effective therapeutic agent in rat chronic inflammatory and neuropathic pain. Eur. J. Pharmacol., 2007, 556, 75–83.
Comelli F. , 'The non-psychoactive cannabis constituent cannabidiol is an orally effective therapeutic agent in rat chronic inflammatory and neuropathic pain ' (2007 ) 556 Eur. J. Pharmacol. : 75 -83 .
Hampson, A. J., Grimaldi, M., Axelrod, J., et al.: Cannabidiol and (-)Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl. Acad. Sci. USA., 1998, 95, 8268–8273.
Axelrod J. , 'Cannabidiol and (-)Δ9-tetrahydrocannabinol are neuroprotective antioxidants ' (1998 ) 95 Proc. Natl. Acad. Sci. USA. : 8268 -8273 .
Scopinho, A. A., Guimarães, F. S., Corrêa, F. M., et al.: Cannabidiol inhibits the hyperphagia induced by cannabinoid-1 or serotonin-1A receptor agonists. Pharmacol. Biochem. Behav., 2011, 98, 268–272.
Corrêa F. M. , 'Cannabidiol inhibits the hyperphagia induced by cannabinoid-1 or serotonin-1A receptor agonists ' (2011 ) 98 Pharmacol. Biochem. Behav. : 268 -272 .
Lukácsné Sziray, N.: The in vivo and in vitro effects of lesion of brain noradrenergic systems in rats. PhD-Thesis. [Az agyi noradrenerg és szerotonerg rendszer léziójának in vivo és in vitro hatásai patkányban.] Doktori értekezés. Semmelweis Egyetem, Budapest, 2010. [Hungarian]
Lukácsné Sziray N. , '', in The in vivo and in vitro effects of lesion of brain noradrenergic systems in rats. PhD-Thesis. [Az agyi noradrenerg és szerotonerg rendszer léziójának in vivo és in vitro hatásai patkányban.] , (2010 ) -.
Tidball, J. G., Villalta, S. A.: Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, 298, R1173–R1187.
Villalta S. A. , 'Regulatory interactions between muscle and the immune system during muscle regeneration ' (2010 ) 298 Am. J. Physiol. Regul. Integr. Comp. Physiol. : R1173 -R1187 .
Booz, G. W.: Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. Free Radic. Biol. Med., 2011, 51, 1054–1061.
Booz G. W. , 'Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress ' (2011 ) 51 Free Radic. Biol. Med. : 1054 -1061 .
O’Sullivan, S. E., Sun, Y., Bennett, A. J., et al.: Time-dependent vascular actions of cannabidiol in the rat aorta. Eur. J. Pharmacol., 2009, 612, 61–68.
Bennett A. J. , 'Time-dependent vascular actions of cannabidiol in the rat aorta ' (2009 ) 612 Eur. J. Pharmacol. : 61 -68 .
D’Eon, T. M., Pierce, K. A., Roix, J. J., et al.: The role of adipocyte insulin resistance in the pathogenesis of obesity-related elevations in endocannabinoids. Diabetes, 2008, 57, 1262–1268.
Roix J. J. , 'The role of adipocyte insulin resistance in the pathogenesis of obesity-related elevations in endocannabinoids ' (2008 ) 57 Diabetes : 1262 -1268 .
Nunn, A. V., Guy, G. W., Bell, J. D.: Endocannabinoids, FOXO and the metabolic syndrome: Redox, function and tipping point – The view from two systems. Immunobiology, 2010, 215, 617–628.
Bell J. D. , 'Endocannabinoids, FOXO and the metabolic syndrome: Redox, function and tipping point – The view from two systems ' (2010 ) 215 Immunobiology : 617 -628 .
Armoni, M., Harel, C., Karnieli, E.: Transcriptional regulation of the GLUT4 gene: from PPAR-γ and FOXO1 to FFA and inflammation. Trends Endocrinol. Metab., 2007, 18, 100–107.
Karnieli E. , 'Transcriptional regulation of the GLUT4 gene: from PPAR-γ and FOXO1 to FFA and inflammation ' (2007 ) 18 Trends Endocrinol. Metab. : 100 -107 .
Kageyama, H., Hirano, T., Okada, K., et al.: Lipoprotein lipase mRNA in white adipose tissue but not in skeletal muscle is increased by pioglitazone through PPAR-γ. Biochem. Biophys. Res. Commun., 2003, 305, 22–27.
Okada K. , 'Lipoprotein lipase mRNA in white adipose tissue but not in skeletal muscle is increased by pioglitazone through PPAR-γ ' (2003 ) 305 Biochem. Biophys. Res. Commun. : 22 -27 .
Farmer, S. R.: Transcriptional control of adipocyte formation. Cell Metab., 2006, 4, 263–273.
Farmer S. R. , 'Transcriptional control of adipocyte formation ' (2006 ) 4 Cell Metab. : 263 -273 .
Leiter, E. H.: The NOD mouse: a model for insulin-dependent diabetes mellitus.; Curr. Protoc. Immunol., 2001 May, Chapter 15, Unit 15.9.
Weiss, L., Zeira, M., Reich, S., et al.: Cannabidiol arrests onset of autoimmune diabetes in NOD mice. Neuropharmacology, 2008, 54, 244–249.
Reich S. , 'Cannabidiol arrests onset of autoimmune diabetes in NOD mice ' (2008 ) 54 Neuropharmacology : 244 -249 .
El-Remessy, A. B., Al-Shabrawey, M., Khalifa, Y., et al.: Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. Am. J. Pathol., 2006, 168, 235–244.
Khalifa Y. , 'Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes ' (2006 ) 168 Am. J. Pathol. : 235 -244 .
Pacher, P., Beckman, J. S., Liaudet, L.: Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007, 87, 315–424.
Liaudet L. , 'Nitric oxide and peroxynitrite in health and disease ' (2007 ) 87 Physiol. Rev. : 315 -424 .
Kaur, H., Halliwell, B.: Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett., 1994, 350, 9–12.
Halliwell B. , 'Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients ' (1994 ) 350 FEBS Lett. : 9 -12 .
Halliwell, B.: What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett., 1997, 411, 157–160.
Halliwell B. , 'What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? ' (1997 ) 411 FEBS Lett. : 157 -160 .
Zhou, Z., Connell, M. C., MacEwan, D. J.: TNFR1-induced NF-κB, but not ERK, p38MAPK or JNK activation, mediates TNF-induced ICAM-1 and VCAM-1 expression on endothelial cells. Cell Signal., 2007, 19, 1238–1248.
MacEwan D. J. , 'TNFR1-induced NF-κB, but not ERK, p38MAPK or JNK activation, mediates TNF-induced ICAM-1 and VCAM-1 expression on endothelial cells ' (2007 ) 19 Cell Signal. : 1238 -1248 .
Rajesh, M., Mukhopadhyay, P., Bátkai, S., et al.: Heart and circulatory physiology, cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am. J. Physiol. Heart Circ. Physiol., 2007, 293, 610–619.
Bátkai S. , 'Heart and circulatory physiology, cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption ' (2007 ) 293 Am. J. Physiol. Heart Circ. Physiol. : 610 -619 .
Toda, N., Imamura, T., Okamura, T.: Alteration of nitric oxide-mediated blood flow regulation in diabetes mellitus. Pharmacol. Ther., 2010, 127, 189–209.
Okamura T. , 'Alteration of nitric oxide-mediated blood flow regulation in diabetes mellitus ' (2010 ) 127 Pharmacol. Ther. : 189 -209 .
El-Remessy, A. B., Tang, Y., Zhu, G., et al.: Neuroprotective effects of cannabidiol in endotoxin-induced uveitis: critical role of p38 MAPK activation. Mol. Vis., 2008, 14, 2190–2203.
Zhu G. , 'Neuroprotective effects of cannabidiol in endotoxin-induced uveitis: critical role of p38 MAPK activation ' (2008 ) 14 Mol. Vis. : 2190 -2203 .
Wu, H. Y., Jan, R. T.: Cannabidiol hydroxyquinone-induced apoptosis of splenocytes is mediated predominantly by thiol depletion. Toxicol Lett., 2010, 195, 68–74.
Jan R. T. , 'Cannabidiol hydroxyquinone-induced apoptosis of splenocytes is mediated predominantly by thiol depletion ' (2010 ) 195 Toxicol Lett. : 68 -74 .
McKallip, R. J., Jia, W., Schlomer, J., et al.: Cannabidiol-induced apoptosis in human leukemia cells: A novel role of cannabidiol in the regulation of p22phox and Nox4 expression. Mol. Pharmacol., 2006, 70, 897–908.
Schlomer J. , 'Cannabidiol-induced apoptosis in human leukemia cells: A novel role of cannabidiol in the regulation of p22phox and Nox4 expression ' (2006 ) 70 Mol. Pharmacol. : 897 -908 .
Liou, G. I., Auchampach, J. A., Hillard, C. J., et al.: Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor. Invest. Ophthalmol. Vis. Sci., 2008, 49, 5526–5531.
Hillard C. J. , 'Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor ' (2008 ) 49 Invest. Ophthalmol. Vis. Sci. : 5526 -5531 .
Kozela, E., Pietr, M., Juknat, A., et al.: Cannabinoids Δ9-tetrahydrocannabinol and cannabidiol differentially inhibit the lipopolysaccharide-activated NF-κB and interferon-β/STAT proinflammatory pathways in BV-2 microglial cells. J. Biol. Chem., 2010, 285, 1616–1626.
Juknat A. , 'Cannabinoids Δ9-tetrahydrocannabinol and cannabidiol differentially inhibit the lipopolysaccharide-activated NF-κB and interferon-β/STAT proinflammatory pathways in BV-2 microglial cells ' (2010 ) 285 J. Biol. Chem. : 1616 -1626 .
Nishikawa, T., Kukidome, D., Sonoda, K., et al.: Impact of mitochondrial ROS production in the pathogenesis of insulin resistance. Diabetes Res. Clin. Pract., 2007, 77 (Suppl. 1), S161–S164.
Sonoda K. , 'Impact of mitochondrial ROS production in the pathogenesis of insulin resistance ' (2007 ) 77 Diabetes Res. Clin. Pract. : S161 -S164 .
Guzmán, M., Sánchez, C., Galve-Roperh, I.: Cannabinoids and cell fate. Pharmacol. Ther., 2002, 95, 175–184.
Galve-Roperh I. , 'Cannabinoids and cell fate ' (2002 ) 95 Pharmacol. Ther. : 175 -184 .
Chen, Y., Buck, J.: Cannabinoids protect cells from oxidative cell death: A receptor-independent mechanism. J. Pharmacol. Exp. Ther., 2000, 293, 807–812.
Buck J. , 'Cannabinoids protect cells from oxidative cell death: A receptor-independent mechanism ' (2000 ) 293 J. Pharmacol. Exp. Ther. : 807 -812 .
Hayakawa, K., Mishima, K., Irie, K., et al.: Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism. Neuropharmacology, 2008, 55, 1280–1286.
Irie K. , 'Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism ' (2008 ) 55 Neuropharmacology : 1280 -1286 .
Mukhopadhyay, P., Rajesh, M., Horváth, B.: Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitrative stress, and cell death. Free Radic. Biol. Med., 2011, 50, 1368–13681.
Horváth B. , 'Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitrative stress, and cell death ' (2011 ) 50 Free Radic. Biol. Med. : 1368 -13681 .
Consroe, P., Laguna, J., Allender, J., et al.: Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol. Biochem. Behav., 1991, 40, 701–708.
Allender J. , 'Controlled clinical trial of cannabidiol in Huntington’s disease ' (1991 ) 40 Pharmacol. Biochem. Behav. : 701 -708 .
Scutt, A., Williamson, E. M.: Cannabinoids stimulate fibroblastic colony formation by bone marrow cells indirectly via CB2 receptors. Calcif. Tissue Int., 2007, 80, 50–59.
Williamson E. M. , 'Cannabinoids stimulate fibroblastic colony formation by bone marrow cells indirectly via CB2 receptors ' (2007 ) 80 Calcif. Tissue Int. : 50 -59 .
Pan, H., Mukhopadhyay, P., Rajesh, M., et al.: Cannabidiol attenuates cisplatin-induced nephrotoxicity by decreasing oxidative/nitrosative stress, inflammation, and cell death. J. Pharmacol. Exp. Ther., 2009, 328, 708–714.
Rajesh M. , 'Cannabidiol attenuates cisplatin-induced nephrotoxicity by decreasing oxidative/nitrosative stress, inflammation, and cell death ' (2009 ) 328 J. Pharmacol. Exp. Ther. : 708 -714 .